forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[VSINPU]Split/Pad and some element-wise OPs support (microsoft#22916)
### Description -Add split/pad/neg/not/ceil/round/min/max op support -Fix conv2d op default pads value issue -Add VSINPU EP to support python bindings ### Motivation and Context -New OPs support for VSINPU EP --------- Signed-off-by: Kee <[email protected]>
- Loading branch information
Showing
9 changed files
with
417 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
191 changes: 191 additions & 0 deletions
191
onnxruntime/core/providers/vsinpu/builders/impl/pad_op_builder.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
/**************************************************************************** | ||
* | ||
* Copyright (c) 2024 Vivante Corporation | ||
* | ||
* Permission is hereby granted, free of charge, to any person obtaining a | ||
* copy of this software and associated documentation files (the "Software"), | ||
* to deal in the Software without restriction, including without limitation | ||
* the rights to use, copy, modify, merge, publish, distribute, sublicense, | ||
* and/or sell copies of the Software, and to permit persons to whom the | ||
* Software is furnished to do so, subject to the following conditions: | ||
* | ||
* The above copyright notice and this permission notice shall be included in | ||
* all copies or substantial portions of the Software. | ||
* | ||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | ||
* DEALINGS IN THE SOFTWARE. | ||
* | ||
*****************************************************************************/ | ||
#pragma once | ||
#include <memory> | ||
#include <vector> | ||
#include <utility> | ||
#include <limits> | ||
#include <algorithm> | ||
#include "core/optimizer/initializer.h" | ||
#include "core/providers/vsinpu/builders/impl/base_op_builder.h" | ||
#include "core/providers/common.h" | ||
#include "core/providers/shared/utils/utils.h" | ||
|
||
namespace onnxruntime { | ||
namespace vsi { | ||
namespace npu { | ||
|
||
typedef tim::vx::ops::PadV2::pad_mode_type PadMode; | ||
|
||
class PadOpBuilder : public BaseOpBuilder { | ||
public: | ||
int GetMinSupportedOpSet(const NodeUnit& /* node_unit */) const override { return 11; } | ||
bool IsOpSupported(const onnxruntime::GraphViewer& graph_viewer, | ||
const Node* node) const override { | ||
NodeAttrHelper helper(*node); | ||
const auto mode = helper.Get("mode", "constant"); | ||
auto input_defs = node->InputDefs(); | ||
size_t num_inputs = input_defs.size(); | ||
auto input_shape = vsi::npu::util::GetTensorShape(*input_defs[0]); | ||
int32_t rank = input_shape.NumDimensions(); | ||
const auto& initializers = graph_viewer.GetAllInitializedTensors(); | ||
|
||
if (mode == "wrap") { | ||
LOGS_DEFAULT(WARNING) << "`wrap` mode Pad is not currently supported for now."; | ||
return false; | ||
} | ||
if (mode == "constant") { | ||
if (num_inputs > 2 && input_defs[2]->Exists()) { | ||
// only support if `constant_value` input is a constant initializer | ||
if (!Contains(initializers, input_defs[2]->Name())) { | ||
LOGS_DEFAULT(WARNING) << "constant_value must be a constant initializer."; | ||
return false; | ||
} | ||
} | ||
} | ||
// only support if `pads` input is known and does not contain negative values | ||
{ | ||
const auto* pads_initializer = graph_viewer.GetConstantInitializer(input_defs[1]->Name()); | ||
if (!pads_initializer) { | ||
LOGS_DEFAULT(WARNING) << "pads must be a constant initializer"; | ||
return false; | ||
} | ||
|
||
Initializer unpacked_tensor(*pads_initializer); | ||
auto tensor_data = unpacked_tensor.DataAsSpan<int64_t>(); | ||
for (size_t i = 0; i < unpacked_tensor.size(); i++) { | ||
if (tensor_data[i] < 0) { | ||
LOGS_DEFAULT(WARNING) << "Negative pad value is not supported: pads[" | ||
<< i << "] = " << tensor_data[i]; | ||
return false; | ||
} | ||
} | ||
} | ||
return true; | ||
} | ||
|
||
bool HasSupportedInputOutputsImpl(const InitializedTensorSet& initializers, | ||
const NodeUnit& node_unit) const override { | ||
for (size_t i = 0; i < node_unit.Inputs().size(); ++i) { | ||
const auto& iodef = node_unit.Inputs()[i]; | ||
if (0 == i) { | ||
if (!util::IsTypeSupported(&iodef.node_arg) || | ||
(*iodef.node_arg.Type() == "tensor(int64)") || | ||
(*iodef.node_arg.Type() == "tensor(bool)")) { | ||
LOGS_DEFAULT(WARNING) << "Unspport tensor data type:" << *iodef.node_arg.Type(); | ||
return false; | ||
} | ||
} else if (1 == i) { | ||
if (!Contains(initializers, iodef.node_arg.Name())) { | ||
LOGS_DEFAULT(WARNING) << "pads must be a constant initializer."; | ||
return false; | ||
} | ||
} else if (2 == i) { | ||
if (iodef.node_arg.Exists() && !Contains(initializers, iodef.node_arg.Name())) { | ||
LOGS_DEFAULT(WARNING) << "constant_value must be a constant initializer."; | ||
return false; | ||
} | ||
} else if (i == 3) { | ||
if (!Contains(initializers, iodef.node_arg.Name())) { | ||
LOGS_DEFAULT(WARNING) << "axes must be a constant initializer.."; | ||
return false; | ||
} | ||
} | ||
} | ||
return true; | ||
} | ||
|
||
bool HandleBuildOp(vsi::npu::GraphEP* graph_ep, | ||
std::vector<std::shared_ptr<tim::vx::Tensor>>& inputs, | ||
std::vector<std::shared_ptr<tim::vx::Tensor>>& outputs, | ||
const NodeUnit& node_unit) override { | ||
LOGS_DEFAULT(VERBOSE) << "Creating Pad Op."; | ||
NodeAttrHelper helper(node_unit); | ||
const auto mode = helper.Get("mode", "constant"); | ||
auto input_defs = node_unit.Inputs(); | ||
PadMode pad_mode = PadMode::PAD_MODE_CONSTANT; | ||
float const_val = 0.0f; | ||
std::vector<int64_t> axes_tensor_data; | ||
int32_t input_rank = inputs[0]->GetShape().size(); | ||
|
||
if (mode == "constant") { | ||
pad_mode = PadMode::PAD_MODE_CONSTANT; | ||
} else if (mode == "reflect") { | ||
pad_mode = PadMode::PAD_MODE_REFLECT; | ||
} else if (mode == "edge") { | ||
pad_mode = PadMode::PAD_MODE_EDGE; | ||
} else { | ||
LOGS_DEFAULT(WARNING) << "`wrap` mode Pad is not currently supported for now."; | ||
return false; | ||
} | ||
|
||
// `pads` input | ||
std::vector<int64_t> onnx_pads(inputs[1]->GetSpec().GetElementNum()); | ||
inputs[1]->CopyDataFromTensor(onnx_pads.data()); | ||
|
||
// `constant_value` input | ||
if (inputs.size() > 2 && pad_mode == PadMode::PAD_MODE_CONSTANT) { | ||
if (input_defs[2].node_arg.Exists()) { | ||
inputs[2]->CopyDataFromTensor(&const_val); | ||
} | ||
} | ||
// `axes` input | ||
if (inputs.size() > 3) { | ||
// optional input axes is provided, use axes initializer data | ||
std::vector<int64_t> axes_tensor(inputs[3]->GetSpec().GetElementNum()); | ||
inputs[3]->CopyDataFromTensor(axes_tensor.data()); | ||
std::transform( | ||
axes_tensor.begin(), axes_tensor.end(), std::back_inserter(axes_tensor_data), | ||
[input_rank](int64_t axis) { return HandleNegativeAxis(axis, input_rank); }); | ||
} else { | ||
// if not provided, make a default axes as [0, 1, ..., input_rank - 1] | ||
std::vector<int64_t> default_axes(input_rank); | ||
std::iota(std::begin(default_axes), std::end(default_axes), 0); | ||
axes_tensor_data = std::move(default_axes); | ||
} | ||
|
||
int64_t num_axes = axes_tensor_data.size(); | ||
std::vector<uint32_t> front_size(input_rank, 0); | ||
std::vector<uint32_t> back_size(input_rank, 0); | ||
|
||
int64_t axes_index = 0; | ||
for (int64_t axes : axes_tensor_data) { | ||
front_size[axes] = onnx_pads[axes_index]; | ||
back_size[axes] = onnx_pads[axes_index + num_axes]; | ||
axes_index++; | ||
} | ||
|
||
std::reverse(front_size.begin(), front_size.end()); | ||
std::reverse(back_size.begin(), back_size.end()); | ||
|
||
auto op = graph_ep->GetGraph()->CreateOperation<tim::vx::ops::PadV2>( | ||
front_size, back_size, const_val, pad_mode); | ||
op->BindInput(inputs[0]).BindOutputs(outputs); | ||
graph_ep->GetOps().push_back(std::move(op)); | ||
return true; | ||
} | ||
}; | ||
} // namespace npu | ||
} // namespace vsi | ||
} // namespace onnxruntime |
Oops, something went wrong.