Skip to content

Commit

Permalink
[webgpu] dump test
Browse files Browse the repository at this point in the history
  • Loading branch information
axinging committed Nov 6, 2023
1 parent 819b5a3 commit 538c298
Show file tree
Hide file tree
Showing 8 changed files with 119 additions and 14 deletions.
3 changes: 3 additions & 0 deletions js/web/lib/index.ts
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,9 @@ export * from 'onnxruntime-common';
import * as ort from 'onnxruntime-common';
export default ort;

export * from './onnxjs/model';
export * as JsTensor from './onnxjs/tensor';
export * as OnnxProto from './onnxjs/ort-schema/protobuf/onnx';
import {registerBackend, env} from 'onnxruntime-common';
import {version} from './version';

Expand Down
6 changes: 6 additions & 0 deletions js/web/lib/onnxjs/graph.ts
Original file line number Diff line number Diff line change
Expand Up @@ -118,15 +118,19 @@ class Node implements Graph.Node {
this.attributes = new Attribute(ProtoUtil.tensorAttributesFromORTFormat(_nodeProto));
}

this.inputNames = [];
this.inputs = [];
this.outputs = [];
this.outputNames = [];
this.executeNode = true;
}

name: string;
opType: string;
inputs: number[];
inputNames: string[];
outputs: number[];
outputNames: string[];
attributes: Attribute;
executeNode: boolean;
}
Expand Down Expand Up @@ -297,6 +301,7 @@ class GraphImpl implements Graph, Graph.Transformer {
dataIndices.set(output, dataIndex);
}
node.outputs.push(dataIndex);
node.outputNames.push(output);

if (this._allData[dataIndex]._from !== undefined) {
throw new Error(`multiple nodes output to one data value: ${dataIndex}`);
Expand Down Expand Up @@ -340,6 +345,7 @@ class GraphImpl implements Graph, Graph.Transformer {
throw new Error(`unrecognized input '${input}' for node: ${nodeProto.name}`);
}
node.inputs.push(dataIndex);
node.inputNames.push(input);

this._allData[dataIndex]._to.push(i);
}
Expand Down
2 changes: 1 addition & 1 deletion js/web/package.json
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@
"@webgpu/types": "^0.1.30",
"base64-js": "^1.5.1",
"chai": "^4.3.7",
"electron": "^23.1.2",
"electron": "^23.3.13",
"globby": "^13.1.3",
"karma": "^6.4.1",
"karma-browserstack-launcher": "^1.6.0",
Expand Down
107 changes: 97 additions & 10 deletions onnxruntime/core/framework/debug_node_inputs_outputs_utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,9 @@
// Licensed under the MIT License.

#ifdef DEBUG_NODE_INPUTS_OUTPUTS

//#include <iostream>
//#include <string>
#include <emscripten/emscripten.h>
#include "core/framework/debug_node_inputs_outputs_utils.h"
#include "core/framework/print_tensor_utils.h"
#include "core/framework/print_tensor_statistics_utils.h"
Expand Down Expand Up @@ -59,8 +61,83 @@ bool FilterNode(const NodeDumpOptions& dump_options, const Node& node) {
}

template <typename T>
void DumpTensorToStdOut(const Tensor& tensor, const NodeDumpOptions& dump_options) {
onnxruntime::utils::PrintCpuTensor<T>(tensor, dump_options.snippet_threshold, dump_options.snippet_edge_items);
void DumpTensorToStdOut(const Tensor& tensor, const std::string tensor_name, const NodeDumpOptions& dump_options) {
auto data = tensor.Data<T>();
const auto& shape = tensor.Shape();
auto num_items = shape.Size();
auto numDimensions = shape.NumDimensions();
int64_t shape_array[numDimensions];
for (size_t i =0 ; i < numDimensions; i ++) {
shape_array[i] = shape[i];
}
auto tensor_type = DataTypeImpl::ToString(tensor.DataType());

EM_ASM(
{
if (window.dump != 1) {
return;
}

DataView.prototype.getUint64 = function(byteOffset, littleEndian) {
// split 64-bit number into two 32-bit parts
const left = this.getUint32(byteOffset, littleEndian);
const right = this.getUint32(byteOffset+4, littleEndian);
const combined = littleEndian? left + 2**32*right : 2**32*left + right;

if (!Number.isSafeInteger(combined))
console.warn(combined, 'exceeds MAX_SAFE_INTEGER. Precision may be lost');
return combined;
};

BigInt.prototype.toJSON = function () {
return Number(this.toString());
};

function SaveObjectToFile(object, name) {
if (window.onnxDumpBlobUrlMap == null) {
window.onnxDumpBlobUrlMap = new Map();
}
const file = new Blob([JSON.stringify(object)], {
type: 'application/json'
});
console.log(name);
const url = URL.createObjectURL(file);
window.onnxDumpBlobUrlMap.set(name, url);
}

const name = UTF8ToString($0);
const buffer = $1;
const tensor_type = UTF8ToString($3);
let data_buffer;
if (tensor_type === 'int64') {
const buffer_size = $2*8;
const bytes = new Uint8Array(buffer_size);
bytes.set(HEAPU8.subarray(buffer, buffer + buffer_size));
data_buffer = new BigInt64Array(bytes.buffer);
} else {
const buffer_size = $2*4;
const bytes = new Uint8Array(buffer_size);
bytes.set(HEAPU8.subarray(buffer, buffer + buffer_size));
data_buffer = new Float32Array(bytes.buffer)
}

const shape_ptr = $4;
const shape_size = $5 * 8;
const shape_bytes = new Uint8Array(shape_size);
shape_bytes.set(HEAPU8.subarray(shape_ptr, shape_ptr + shape_size));

const shape_int64 = new BigInt64Array(shape_bytes.buffer);
SaveObjectToFile({'data': Array.from(data_buffer),
'dims':Array.from(shape_int64), 'type': tensor_type}, name);
},
reinterpret_cast<int32_t>(tensor_name.c_str()),
reinterpret_cast<int32_t>(data),
static_cast<int32_t>(num_items),
reinterpret_cast<int32_t>(tensor_type),
shape_array,
numDimensions);

// onnxruntime::utils::PrintCpuTensor<T>(tensor, dump_options.snippet_threshold, dump_options.snippet_edge_items);
if (dump_options.dump_flags & NodeDumpOptions::DumpFlags::StatisticsData) {
onnxruntime::utils::PrintCpuTensorStats<T>(tensor);
}
Expand Down Expand Up @@ -298,11 +375,12 @@ void DumpCpuTensor(
const Tensor& tensor, const TensorMetadata& tensor_metadata) {
switch (dump_options.data_destination) {
case NodeDumpOptions::DataDestination::StdOut: {
DispatchOnTensorType(tensor.DataType(), DumpTensorToStdOut, tensor, dump_options);
DispatchOnTensorType(tensor.DataType(), DumpTensorToStdOut, tensor, tensor_metadata.name, dump_options);
break;
}
case NodeDumpOptions::DataDestination::TensorProtoFiles: {
const Path tensor_file = dump_options.output_dir / Path::Parse(MakeTensorFileName(tensor_metadata.name, dump_options));
std::cout<<" tensor_file =" <<tensor_file.ToPathString() <<", tensor_metadata.name="<<tensor_metadata.name<<"\n";
DumpTensorToFile(tensor, tensor_metadata.name, tensor_file);
break;
}
Expand Down Expand Up @@ -447,6 +525,17 @@ static void PrintIf(bool boolean_expression, const std::string& message) {
}
}

void DumpCpuTensorFromFrame(const Tensor& tensor, const SessionState& session_state, const std::string& name) {
TensorMetadata tensor_metadata;
tensor_metadata.name = name + "_Dump";
tensor_metadata.step = 1;
tensor_metadata.consumer = "unknowConsumer";
utils::NodeDumpOptions opts{};
opts.dump_flags |= utils::NodeDumpOptions::DumpFlags::InputData;
opts.dump_flags |= utils::NodeDumpOptions::DumpFlags::OutputData;
DumpTensor(opts, tensor, tensor_metadata, session_state);
}

void DumpNodeInputs(
const NodeDumpOptions& dump_options,
const NodeDumpContext& dump_context,
Expand Down Expand Up @@ -480,9 +569,7 @@ void DumpNodeInputs(
for (auto i = 0, end = context.InputCount(); i < end; ++i) {
if (input_defs[i]->Exists()) {
std::cout << "Input " << i << " Name: " << input_defs[i]->Name() << "\n";

const auto* type = context.InputType(i);

if (type) {
if (type->IsTensorType()) {
if (const auto* tensor = context.Input<Tensor>(i); tensor != nullptr) {
Expand All @@ -491,12 +578,12 @@ void DumpNodeInputs(
const bool is_shape_set = (dump_options.dump_flags & NodeDumpOptions::DumpFlags::Shape) != 0;
PrintIf(is_shape_set, MakeString(" Shape: ", shape, "\n"));

if ((dump_options.dump_flags & NodeDumpOptions::DumpFlags::InputData) != 0) {
//if ((dump_options.dump_flags & NodeDumpOptions::DumpFlags::InputData) != 0) {
tensor_metadata.name = input_defs[i]->Name();
tensor_metadata.step = dump_context.iteration;
tensor_metadata.consumer = node.Name() + ":" + std::to_string(i);
DumpTensor(dump_options, *tensor, tensor_metadata, session_state);
}
//}
} else {
std::cout << " is empty optional tensor.\n";
}
Expand Down Expand Up @@ -562,12 +649,12 @@ void DumpNodeOutputs(
const bool is_shape_set = (dump_options.dump_flags & NodeDumpOptions::DumpFlags::Shape) != 0;
PrintIf(is_shape_set, MakeString(" Shape: ", shape, "\n"));

if ((dump_options.dump_flags & NodeDumpOptions::DumpFlags::OutputData) != 0) {
//if ((dump_options.dump_flags & NodeDumpOptions::DumpFlags::OutputData) != 0) {
tensor_metadata.name = output_defs[i]->Name();
tensor_metadata.step = dump_context.iteration;
tensor_metadata.producer = node.Name() + ":" + std::to_string(i);
DumpTensor(dump_options, *tensor, tensor_metadata, session_state);
}
//}
} else {
std::cout << " is empty optional tensor.\n";
}
Expand Down
2 changes: 2 additions & 0 deletions onnxruntime/core/framework/debug_node_inputs_outputs_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,8 @@ void DumpNodeOutputs(
const Node& node,
const SessionState& session_state);

void DumpCpuTensorFromFrame(const Tensor& tensor, const SessionState& session_state, const std::string& name);

} // namespace utils
} // namespace onnxruntime

Expand Down
2 changes: 1 addition & 1 deletion onnxruntime/core/framework/print_tensor_statistics_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ void PrintCpuTensorStats(const Tensor& tensor) {
}

const T* data = tensor.Data<T>();
PrintTensorStats<T>(data, num_items);
PrintTensorStats<T>(data, (size_t)num_items);
std::cout << std::endl;
}

Expand Down
9 changes: 7 additions & 2 deletions onnxruntime/core/graph/model.cc
Original file line number Diff line number Diff line change
Expand Up @@ -550,10 +550,15 @@ static Status SaveModel(Model& model, const T& file_path) {
// Node.js
require('fs').writeFileSync(file_path, bytes);
} else {
if (window.onnxDump != 2) {
console.log("not dump");
return;
}
// Browser
const file = new File([bytes], file_path, {type: "application/octet-stream" });
const url = URL.createObjectURL(file);
window.open(url, '_blank');
// const url = URL.createObjectURL(file);
// window.open(url, '_blank');
window.optmizedModelBlobUrl = URL.createObjectURL(file);
}
}),
reinterpret_cast<int32_t>(buffer),
Expand Down
2 changes: 2 additions & 0 deletions onnxruntime/core/optimizer/graph_transformer_utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -219,7 +219,9 @@ InlinedVector<std::unique_ptr<GraphTransformer>> GenerateTransformers(
excluded_initializers.insert(p.first);
}
const InlinedHashSet<std::string_view> no_limit_empty_ep_list = {};
#ifndef DEBUG_NODE_INPUTS_OUTPUTS
transformers.emplace_back(std::make_unique<ConstantSharing>(no_limit_empty_ep_list, excluded_initializers));
#endif

transformers.emplace_back(std::make_unique<CommonSubexpressionElimination>());
transformers.emplace_back(std::make_unique<ConstantFolding>(cpu_execution_provider, !disable_quant_qdq));
Expand Down

0 comments on commit 538c298

Please sign in to comment.