Implementation of Paper H. Lin, Y. Fu, P. Lu, et.al. TC-Net for iSBIR: Triplet Classification Network for instance-level Sketch Based Image Retrieval. In Proc. ACM Multimedia 2019.
Datasets used in our paper. Your can modify the parameter in train.py to read different datasets.
-
parameter
obj
--obj=shoes
or--obj=chairs
-
file structure
- QUML_v2 |- ShoeV2_photo | |- 1135045020.png | |- ... | |- ShoeV2_sketch | |- 1135045020_1.png | |- ... | |- photo_train.txt |- photo_test.txt |- sketch_train.txt |- sketch_test.txt
-
parameter
obj,data_root
--obj=shoes_v2 --data_root=/home/xxx/dataset/sketch/sbir_qian/QUML_v2
-
file structure
- sketchy |- 256x256 | |- photo | | |- tx_000100000000 | | | |- airplane | | | | |- n02691156_507.jpg | | | | |- ... (othre photos) | | | |- ... (other categories) | | |- tx_(does not matter) | | | |- sketch | | |- tx_000100000000 | | | |- airplane | | | | |- n02691156_507-1.jpg | | | | |- ... (other sketches) | | | |- ... (other categories) | | |- tx_(does not matter) | |- info | |- invalid-ambiguous.txt | |- invalid-context.txt | |- invalid-error.txt | |- invalid-pose.txt | |- testset.txt
-
parameter
obj,data_root
--obj=sketchy --data_root=/home/xxx/dataset/sketch/sketchy
python train.py --obj=shoes_v2 --data_root=/home/lp_user/dataset/sketch/sbir_qian/QUML_v2 --model_type=densenet --feat_dim=1024 --loss_type='triplet,centre' --loss_ratio='0.13,0.0013' --flag=shoesv2-tpl_ctr-densebn
-
training from pretrained model
set
--phase=train_continue
and make sure parametersflag
andobj
are identical with the previous model.