Pytorch implementation of the paper - VQA: Visual Question Answering (https://arxiv.org/pdf/1505.00468.pdf).
$ git clone https://github.com/tbmoon/basic_vqa.git
2. Download and unzip the dataset from official url of VQA: https://visualqa.org/download.html.
$ cd basic_vqa/utils
$ chmod +x download_and_unzip_datasets.csh
$ ./download_and_unzip_datasets.csh
$ python resize_images.py --input_dir='../datasets/Images' --output_dir='../datasets/Resized_Images'
$ python make_vacabs_for_questions_answers.py --input_dir='../datasets'
$ python build_vqa_inputs.py --input_dir='../datasets' --output_dir='../datasets'
$ cd ..
$ python train.py
- Comparison Result
Model | Metric | Dataset | Accuracy | Source |
---|---|---|---|---|
Paper Model | Open-Ended | VQA v2 | 54.08 | VQA Challenge |
My Model | Multiple Choice | VQA v2 | 54.72 |
- Loss and Accuracy on VQA datasets v2
-
Paper implementation
- Paper: VQA: Visual Question Answering
- URL: https://arxiv.org/pdf/1505.00468.pdf
-
Pytorch tutorial
-
Preprocessing
- Tensorflow implementation of N2NNM
- Github: https://github.com/ronghanghu/n2nmn