Skip to content
forked from cran/dbscan

❗ This is a read-only mirror of the CRAN R package repository. dbscan — Density Based Clustering of Applications with Noise (DBSCAN) and Related Algorithms Report bugs for this package: https://github.com/mhahsler/dbscan/issues

Notifications You must be signed in to change notification settings

augustoqm/dbscan

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

dbscan - Density Based Clustering of Applications with Noise (DBSCAN) and Related Algorithms - R package

CRAN version CRAN RStudio mirror downloads Travis-CI Build Status AppVeyor Build Status

This R package provides a fast C++ reimplementation of several density-based algorithms of the DBSCAN family for spatial data. Includes the DBSCAN (density-based spatial clustering of applications with noise) and OPTICS (ordering points to identify the clustering structure) clustering algorithms and the LOF (local outlier factor) algorithm. The implementations uses the kd-tree data structure (from library ANN) for faster k-nearest neighbor search. An R interface to fast kNN and fixed-radius NN search is also provided.

This implementation is typically faster than the native R implementation in package fpc, or the implementations in WEKA, ELKI and Python's scikit-learn.

Installation

  • Stable CRAN version: install from within R.
  • Current development version: Download package from AppVeyor or install via intall_github("mhahsler/dbscan") (requires devtools)

Examples

library("dbscan")

## use the numeric variables in the iris dataset
data("iris")
x <- as.matrix(iris[, 1:4])
 
## DBSCAN
db <- dbscan(x, eps = .4, minPts = 4)
db
## visualize results (noise is shown in black)
pairs(x, col = db$cluster + 1L)

## LOF (local outlier factor) 
lof <- lof(x, k = 4)
## larger bubbles in the visualization have a larger LOF
pairs(x, cex = lof)

## OPTICS
opt <- optics(x, eps = 1, minPts = 4, eps_cl = .4)
opt
## create a reachability plot (extracted DBSCAN clusters at eps_cl=.4 are colored)
plot(opt)
## plot the extracted DBSCAN clustering
pairs(x, col = opt$cluster + 1L)

About

❗ This is a read-only mirror of the CRAN R package repository. dbscan — Density Based Clustering of Applications with Noise (DBSCAN) and Related Algorithms Report bugs for this package: https://github.com/mhahsler/dbscan/issues

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 87.1%
  • R 8.9%
  • C 2.2%
  • Objective-C 1.8%