-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #124 from szhan/add_nb_haploid
Add Jupyter notebook showing how to use haploid LS HMM algorithms
- Loading branch information
Showing
1 changed file
with
229 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,229 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import msprime\n", | ||
"import lshmm\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Input data\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# First, let's simulate some haplotypes to use as a reference panel.\n", | ||
"seed = 1208\n", | ||
"ts = msprime.sim_mutations(\n", | ||
" msprime.sim_ancestry(\n", | ||
" samples=10,\n", | ||
" ploidy=1,\n", | ||
" sequence_length=1e4,\n", | ||
" discrete_genome=True,\n", | ||
" recombination_rate=1e-4,\n", | ||
" random_seed=seed,\n", | ||
" ),\n", | ||
" rate=1e-4,\n", | ||
" random_seed=seed,\n", | ||
")\n", | ||
"ts\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# A reference panel must be of size (number of sites, number of haplotypes).\n", | ||
"ref_panel = ts.genotype_matrix()\n", | ||
"\n", | ||
"# A query must be of size (1, number of sites).\n", | ||
"# It can contain MISSING values, but not NONCOPY values.\n", | ||
"query = ref_panel[:, 0].reshape(1, ts.num_sites)\n", | ||
"\n", | ||
"# The number of distinct alleles per site is needed to get per-site mutation rates.\n", | ||
"num_alleles = lshmm.core.get_num_alleles(ref_panel, query)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Per-site recombination and mutation probabilities are needed\n", | ||
"# to parametrise the LS HMM.\n", | ||
"rho = np.zeros(ts.num_sites, dtype=np.float64) + 1e-4\n", | ||
"rho[0] = 0\n", | ||
"mu = np.zeros(ts.num_sites, dtype=np.float64) + 1e-4\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Viterbi algorithm" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Let's determine the best copying path and its log-likelihood using the Viterbi algorithm.\n", | ||
"path, log_lik = lshmm.api.viterbi(\n", | ||
" ref_panel,\n", | ||
" query,\n", | ||
" num_alleles,\n", | ||
" prob_recombination=rho,\n", | ||
" prob_mutation=mu,\n", | ||
" scale_mutation_rate=True,\n", | ||
")\n", | ||
"print(f\"Parents in the path: {len(np.unique(path))}\")\n", | ||
"print(f\"Log-likelihood: {log_lik}\")\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# There is a function to evaluate the log-likelihood of a copying path.\n", | ||
"# Let's check that we get the same log-likelihood of the same copying path \n", | ||
"# under the same parameters using the function.\n", | ||
"log_lik_2 = lshmm.api.path_loglik(\n", | ||
" ref_panel,\n", | ||
" query,\n", | ||
" num_alleles,\n", | ||
" path,\n", | ||
" prob_recombination=rho,\n", | ||
" prob_mutation=mu,\n", | ||
" scale_mutation_rate=True,\n", | ||
")\n", | ||
"print(f\"Is the log-likelihood identical? {log_lik == log_lik_2}\")\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# We should get a different log-likelihood value if the parameters are not the same.\n", | ||
"# Let's check the log-likelihood of the same copying path under different parameters.\n", | ||
"log_lik_3 = lshmm.api.path_loglik(\n", | ||
" ref_panel,\n", | ||
" query,\n", | ||
" num_alleles,\n", | ||
" path,\n", | ||
" prob_recombination=rho,\n", | ||
" prob_mutation=mu + 1e-5, # Increase\n", | ||
" scale_mutation_rate=True,\n", | ||
")\n", | ||
"print(f\"Is the log-likelihood identical? {log_lik == log_lik_3}\")\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Forward-backward algorithm" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# To calculate the forward probability matrix of a query,\n", | ||
"# let's use the forward algorithm.\n", | ||
"np.set_printoptions(linewidth=100, precision=4)\n", | ||
"fwd_mat, norm_factor, log_lik = lshmm.api.forwards(\n", | ||
" ref_panel,\n", | ||
" query,\n", | ||
" num_alleles=num_alleles,\n", | ||
" prob_recombination=rho,\n", | ||
" prob_mutation=mu,\n", | ||
" scale_mutation_rate=True,\n", | ||
" normalise=True,\n", | ||
")\n", | ||
"fwd_mat\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Now, to calculate the backward probability matrix of the same query,\n", | ||
"# let's use the backward algorithm.\n", | ||
"np.set_printoptions(linewidth=100, precision=4)\n", | ||
"bwd_mat = lshmm.api.backwards(\n", | ||
" ref_panel,\n", | ||
" query,\n", | ||
" num_alleles,\n", | ||
" normalisation_factor_from_forward=norm_factor,\n", | ||
" prob_recombination=rho,\n", | ||
" prob_mutation=mu,\n", | ||
" scale_mutation_rate=True,\n", | ||
")\n", | ||
"bwd_mat\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Check the integrity of the matrices.\n", | ||
"np.allclose(np.sum(fwd_mat * bwd_mat, axis=1), 1.0)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |