forked from microsoft/Megatron-DeepSpeed
-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Marieme Ngom
committed
Sep 23, 2024
1 parent
295fcb3
commit cf80e6b
Showing
3 changed files
with
221 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
import math | ||
import torch | ||
from torch import Tensor | ||
from torch.optim.optimizer import Optimizer | ||
from typing import List, Optional | ||
|
||
|
||
#SOphiaG implementation from https://github.com/Liuhong99/Sophia/blob/main/sophia.py, copy pasted here because no pip and not sure about submodules | ||
|
||
class SophiaG(Optimizer): | ||
def __init__(self, params, lr=1e-4, betas=(0.965, 0.99), rho = 0.04, | ||
weight_decay=1e-1, *, maximize: bool = False, | ||
capturable: bool = False): | ||
if not 0.0 <= lr: | ||
raise ValueError("Invalid learning rate: {}".format(lr)) | ||
if not 0.0 <= betas[0] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | ||
if not 0.0 <= betas[1] < 1.0: | ||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | ||
if not 0.0 <= rho: | ||
raise ValueError("Invalid rho parameter at index 1: {}".format(rho)) | ||
if not 0.0 <= weight_decay: | ||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | ||
defaults = dict(lr=lr, betas=betas, rho=rho, | ||
weight_decay=weight_decay, | ||
maximize=maximize, capturable=capturable) | ||
super(SophiaG, self).__init__(params, defaults) | ||
|
||
def __setstate__(self, state): | ||
super().__setstate__(state) | ||
for group in self.param_groups: | ||
group.setdefault('maximize', False) | ||
group.setdefault('capturable', False) | ||
state_values = list(self.state.values()) | ||
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step']) | ||
if not step_is_tensor: | ||
for s in state_values: | ||
s['step'] = torch.tensor(float(s['step'])) | ||
|
||
@torch.no_grad() | ||
def update_hessian(self): | ||
for group in self.param_groups: | ||
beta1, beta2 = group['betas'] | ||
for p in group['params']: | ||
if p.grad is None: | ||
continue | ||
state = self.state[p] | ||
|
||
if len(state) == 0: | ||
state['step'] = torch.zeros((1,), dtype=torch.float, device=p.device) \ | ||
if self.defaults['capturable'] else torch.tensor(0.) | ||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) | ||
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format) | ||
|
||
if 'hessian' not in state.keys(): | ||
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format) | ||
|
||
state['hessian'].mul_(beta2).addcmul_(p.grad, p.grad, value=1 - beta2) | ||
|
||
|
||
@torch.no_grad() | ||
def step(self, closure=None, bs=5120): | ||
loss = None | ||
if closure is not None: | ||
with torch.enable_grad(): | ||
loss = closure() | ||
|
||
for group in self.param_groups: | ||
params_with_grad = [] | ||
grads = [] | ||
exp_avgs = [] | ||
state_steps = [] | ||
hessian = [] | ||
beta1, beta2 = group['betas'] | ||
|
||
for p in group['params']: | ||
if p.grad is None: | ||
continue | ||
params_with_grad.append(p) | ||
|
||
if p.grad.is_sparse: | ||
raise RuntimeError('Hero does not support sparse gradients') | ||
grads.append(p.grad) | ||
state = self.state[p] | ||
# State initialization | ||
if len(state) == 0: | ||
state['step'] = torch.zeros((1,), dtype=torch.float, device=p.device) \ | ||
if self.defaults['capturable'] else torch.tensor(0.) | ||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) | ||
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format) | ||
|
||
if 'hessian' not in state.keys(): | ||
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format) | ||
|
||
exp_avgs.append(state['exp_avg']) | ||
state_steps.append(state['step']) | ||
hessian.append(state['hessian']) | ||
|
||
if self.defaults['capturable']: | ||
bs = torch.ones((1,), dtype=torch.float, device=p.device) * bs | ||
|
||
sophiag(params_with_grad, | ||
grads, | ||
exp_avgs, | ||
hessian, | ||
state_steps, | ||
bs=bs, | ||
beta1=beta1, | ||
beta2=beta2, | ||
rho=group['rho'], | ||
lr=group['lr'], | ||
weight_decay=group['weight_decay'], | ||
maximize=group['maximize'], | ||
capturable=group['capturable']) | ||
|
||
return loss | ||
|
||
def sophiag(params: List[Tensor], | ||
grads: List[Tensor], | ||
exp_avgs: List[Tensor], | ||
hessian: List[Tensor], | ||
state_steps: List[Tensor], | ||
capturable: bool = False, | ||
*, | ||
bs: int, | ||
beta1: float, | ||
beta2: float, | ||
rho: float, | ||
lr: float, | ||
weight_decay: float, | ||
maximize: bool): | ||
|
||
if not all(isinstance(t, torch.Tensor) for t in state_steps): | ||
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors") | ||
|
||
|
||
func = _single_tensor_sophiag | ||
|
||
func(params, | ||
grads, | ||
exp_avgs, | ||
hessian, | ||
state_steps, | ||
bs=bs, | ||
beta1=beta1, | ||
beta2=beta2, | ||
rho=rho, | ||
lr=lr, | ||
weight_decay=weight_decay, | ||
maximize=maximize, | ||
capturable=capturable) | ||
|
||
def _single_tensor_sophiag(params: List[Tensor], | ||
grads: List[Tensor], | ||
exp_avgs: List[Tensor], | ||
hessian: List[Tensor], | ||
state_steps: List[Tensor], | ||
*, | ||
bs: int, | ||
beta1: float, | ||
beta2: float, | ||
rho: float, | ||
lr: float, | ||
weight_decay: float, | ||
maximize: bool, | ||
capturable: bool): | ||
|
||
for i, param in enumerate(params): | ||
grad = grads[i] if not maximize else -grads[i] | ||
exp_avg = exp_avgs[i] | ||
hess = hessian[i] | ||
step_t = state_steps[i] | ||
|
||
if capturable: | ||
assert param.is_cuda and step_t.is_cuda and bs.is_cuda | ||
|
||
if torch.is_complex(param): | ||
grad = torch.view_as_real(grad) | ||
exp_avg = torch.view_as_real(exp_avg) | ||
hess = torch.view_as_real(hess) | ||
param = torch.view_as_real(param) | ||
|
||
# update step | ||
step_t += 1 | ||
|
||
# Perform stepweight decay | ||
param.mul_(1 - lr * weight_decay) | ||
|
||
# Decay the first and second moment running average coefficient | ||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | ||
|
||
if capturable: | ||
step_size = lr | ||
step_size_neg = step_size.neg() | ||
|
||
ratio = (exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None,1) | ||
param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg) | ||
else: | ||
step_size_neg = - lr | ||
|
||
ratio = (exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None,1) | ||
param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg) |