Skip to content

Commit

Permalink
Merge pull request #58 from argonne-lcf/spike-skipper
Browse files Browse the repository at this point in the history
Spike skipper
  • Loading branch information
saforem2 authored Oct 8, 2024
2 parents 7f71572 + 09accde commit cef3fc7
Show file tree
Hide file tree
Showing 7 changed files with 412 additions and 180 deletions.
10 changes: 10 additions & 0 deletions megatron/arguments.py
Original file line number Diff line number Diff line change
Expand Up @@ -780,6 +780,15 @@ def _add_regularization_args(parser):
help='Weight decay increment function.')
group.add_argument('--clip-grad', type=float, default=1.0,
help='Gradient clipping based on global L2 norm.')
group.add_argument('--sophiag-beta1', type=float, default=0.9,
help='First coefficient for computing running averages '
'of gradient and its hessian')
group.add_argument('--sophiag-beta2', type=float, default=0.95,
help='Second coefficient for computing running averages '
'of gradient and its hessian')
group.add_argument('--sophiag-rho', type=float, default=0.01,
help='SophiaG clipping threshhold')

group.add_argument('--adam-beta1', type=float, default=0.9,
help='First coefficient for computing running averages '
'of gradient and its square')
Expand Down Expand Up @@ -946,6 +955,7 @@ def _add_training_args(parser):
choices=[
'adam',
'adamw',
'sophiag',
'sgd',
'ds.fusedlamb',
'ipex.lamb',
Expand Down
4 changes: 3 additions & 1 deletion megatron/checkpointing.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,7 +239,9 @@ def save_checkpoint(iteration, model, optimizer, opt_param_scheduler):
"""Save a model checkpoint."""
args = get_args()
assert args is not None
iteration = args.iteration
args_iter = args.iteration
if args_iter != iteration:
log.warning(f"{args.iteration=} != {iteration} passed to 'save_checkpoint'")

save_lr_state_dict()

Expand Down
9 changes: 9 additions & 0 deletions megatron/optimizer/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -315,6 +315,15 @@ def optimizer_hook(p):
weight_decay=args.weight_decay,
momentum=args.sgd_momentum
)
elif str(args.optimizer).lower() == 'sophiag':
from .sophia import SophiaG
optimizer = SophiaG(
param_groups,
lr=args.lr,
betas=(args.sophiag_beta1, args.sophiag_beta2),
rho = args.sophiag_rho,
weight_decay=args.weight_decay
)
else:
raise TypeError(f'{args.optimizer} optimizer is not supported.')
if args.deepspeed:
Expand Down
202 changes: 202 additions & 0 deletions megatron/optimizer/sophia.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
import math
import torch
from torch import Tensor
from torch.optim.optimizer import Optimizer
from typing import List, Optional


#SOphiaG implementation from https://github.com/Liuhong99/Sophia/blob/main/sophia.py, copy pasted here because no pip and not sure about submodules

class SophiaG(Optimizer):
def __init__(self, params, lr=1e-4, betas=(0.965, 0.99), rho = 0.04,
weight_decay=1e-1, *, maximize: bool = False,
capturable: bool = False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= rho:
raise ValueError("Invalid rho parameter at index 1: {}".format(rho))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, rho=rho,
weight_decay=weight_decay,
maximize=maximize, capturable=capturable)
super(SophiaG, self).__init__(params, defaults)

def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault('maximize', False)
group.setdefault('capturable', False)
state_values = list(self.state.values())
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
if not step_is_tensor:
for s in state_values:
s['step'] = torch.tensor(float(s['step']))

@torch.no_grad()
def update_hessian(self):
for group in self.param_groups:
beta1, beta2 = group['betas']
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]

if len(state) == 0:
state['step'] = torch.zeros((1,), dtype=torch.float, device=p.device) \
if self.defaults['capturable'] else torch.tensor(0.)
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format)

if 'hessian' not in state.keys():
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format)

state['hessian'].mul_(beta2).addcmul_(p.grad, p.grad, value=1 - beta2)


@torch.no_grad()
def step(self, closure=None, bs=5120):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()

for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
state_steps = []
hessian = []
beta1, beta2 = group['betas']

for p in group['params']:
if p.grad is None:
continue
params_with_grad.append(p)

if p.grad.is_sparse:
raise RuntimeError('Hero does not support sparse gradients')
grads.append(p.grad)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = torch.zeros((1,), dtype=torch.float, device=p.device) \
if self.defaults['capturable'] else torch.tensor(0.)
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format)

if 'hessian' not in state.keys():
state['hessian'] = torch.zeros_like(p, memory_format=torch.preserve_format)

exp_avgs.append(state['exp_avg'])
state_steps.append(state['step'])
hessian.append(state['hessian'])

if self.defaults['capturable']:
bs = torch.ones((1,), dtype=torch.float, device=p.device) * bs

sophiag(params_with_grad,
grads,
exp_avgs,
hessian,
state_steps,
bs=bs,
beta1=beta1,
beta2=beta2,
rho=group['rho'],
lr=group['lr'],
weight_decay=group['weight_decay'],
maximize=group['maximize'],
capturable=group['capturable'])

return loss

def sophiag(params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
hessian: List[Tensor],
state_steps: List[Tensor],
capturable: bool = False,
*,
bs: int,
beta1: float,
beta2: float,
rho: float,
lr: float,
weight_decay: float,
maximize: bool):

if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")


func = _single_tensor_sophiag

func(params,
grads,
exp_avgs,
hessian,
state_steps,
bs=bs,
beta1=beta1,
beta2=beta2,
rho=rho,
lr=lr,
weight_decay=weight_decay,
maximize=maximize,
capturable=capturable)

def _single_tensor_sophiag(params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
hessian: List[Tensor],
state_steps: List[Tensor],
*,
bs: int,
beta1: float,
beta2: float,
rho: float,
lr: float,
weight_decay: float,
maximize: bool,
capturable: bool):

for i, param in enumerate(params):
grad = grads[i] if not maximize else -grads[i]
exp_avg = exp_avgs[i]
hess = hessian[i]
step_t = state_steps[i]

if capturable:
assert param.is_cuda and step_t.is_cuda and bs.is_cuda

if torch.is_complex(param):
grad = torch.view_as_real(grad)
exp_avg = torch.view_as_real(exp_avg)
hess = torch.view_as_real(hess)
param = torch.view_as_real(param)

# update step
step_t += 1

# Perform stepweight decay
param.mul_(1 - lr * weight_decay)

# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)

if capturable:
step_size = lr
step_size_neg = step_size.neg()

ratio = (exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None,1)
param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg)
else:
step_size_neg = - lr

ratio = (exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None,1)
param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg)
38 changes: 32 additions & 6 deletions megatron/training.py
Original file line number Diff line number Diff line change
Expand Up @@ -822,6 +822,8 @@ def train_step(
timers = get_timers()
accelerator = get_accelerator()
assert args is not None and timers is not None and accelerator is not None
grad_norm = None
num_zeros_in_grad = None
if args.deepspeed and args.ds_pipeline_enabled:
num_zeros_in_grad = 0
assert isinstance(model[0], deepspeed.PipelineEngine)
Expand Down Expand Up @@ -919,6 +921,10 @@ def train_step(
if args.deepspeed:
skipped_iter = 0 if update_successful else 1
grad_norm = model[0].get_global_grad_norm()
# Empty unused memory.
if args.empty_unused_memory_level >= 2 and accelerator is not None:
accelerator.empty_cache()

# XXX: [saforem2]: ----------------------------------------------------
# Is `num_zeros_in_grad` worth calculating (/ implementing) ??
# the `Megatron`-specific implementation is at:
Expand Down Expand Up @@ -1002,9 +1008,10 @@ def train(
# Turn on training mode which enables dropout.
for model_module in model:
model_module.train()
grad_norm = None
# Tracking loss.
total_loss_dict = {}
loss_dict = {}
loss_dict = {"skipped_iter": 0}
# Iterations.
iteration = args.iteration
# Translate args to core configuration
Expand Down Expand Up @@ -1060,12 +1067,31 @@ def train(
[i <= (iteration + 1) <= j for (i, j) in ranges_to_skip]
):
log.info(f"Caught {iteration + 1} in 'ranges_to_skip', skipping!")
# total_loss_dict = {"skipped iterations": }
skipped_iter = 1
total_loss_dict["skipped iterations"] += skipped_iter
grad_norm = None
num_zeros_in_grad = None
num_skipped_iters += 1
num_zeros_in_grad = None
gas = args.deepspeed_config_dict["gradient_accumulation_steps"]
for microstep in range(gas):
_batch = next(train_data_iterator)
_tokens = _batch["text"]
if (
iteration < 10
and os.environ.get("DUMP_SKIPPED_ITERS", None)
and RANK == 0
):
log.info(f"{_tokens.shape}, {len(train_data_iterator)=}")
log.info(
f"{iteration=} [{microstep}/{gas}]: ({_tokens.shape})\n{_tokens[:10]=}"
)

increment = (
get_num_microbatches() * args.micro_batch_size * args.data_parallel_size
)
model[0].skipped_steps += 1
model[0].global_steps += 1
model[0].micro_steps += 1
model[0].global_samples += model[0].train_batch_size()
opt_param_scheduler.step(increment=increment)
else:
if os.getenv("TORCH_PROFILER_ENABLE") == "2":
from torch.profiler import profile, ProfilerActivity
Expand All @@ -1074,7 +1100,7 @@ def train(
activities = [
ProfilerActivity.CPU,
ProfilerActivity.CUDA,
ProfilerActivity.XPU,
ProfilerActivity.XPU, # type:ignore
]
except Exception:
log.warning("TORCH PROFILER WARNING: XPU is not supported")
Expand Down
17 changes: 10 additions & 7 deletions megatron/training_log.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,10 @@ def training_log(
+ loss_dict[key]
)
else:
value = loss_dict[key].float().sum().item()
try:
value = loss_dict[key].float().sum().item()
except AttributeError:
value = loss_dict[key]
is_nan = value == float("inf") or value == -float("inf") or value != value
got_nan = got_nan or is_nan
total_loss_dict[nan_iters_key] = total_loss_dict.get(nan_iters_key, 0) + int(
Expand Down Expand Up @@ -645,6 +648,12 @@ def training_log(
)
log_string += " [LM]TFLOPs={:.2f} |".format(tflops_lm_per_gpu)
log_string += " [DS]TFLOPs={:.2f} |".format(tflops)
if wandb is not None and getattr(wandb, "run", None) is not None:
wandb_metrics |= {
"training/skiped_iterations": total_loss_dict[skipped_iters_key]
}
wandb_metrics |= {"training/nan_iterations": total_loss_dict[nan_iters_key]}
wandb.log(wandb_metrics)
total_loss_dict[advanced_iters_key] = 0
total_loss_dict[skipped_iters_key] = 0
total_loss_dict[nan_iters_key] = 0
Expand All @@ -654,12 +663,6 @@ def training_log(
# Report memory after optimizer state has been initialized.
report_memory("(after {} iterations)".format(iteration))
report_memory_flag = False
if wandb is not None and getattr(wandb, "run", None) is not None:
wandb_metrics |= {
"training/skiped_iterations": total_loss_dict[skipped_iters_key]
}
wandb_metrics |= {"training/nan_iterations": total_loss_dict[nan_iters_key]}
wandb.log(wandb_metrics)
if timers is not None:
timers.log(timers_to_log, normalizer=args.log_interval)

Expand Down
Loading

0 comments on commit cef3fc7

Please sign in to comment.