Skip to content

Commit

Permalink
Merge pull request #16 from argmaxinc/atila/fixes_for_wooster
Browse files Browse the repository at this point in the history
README and ProgressBar fixes
  • Loading branch information
atiorh authored Nov 9, 2024
2 parents 33d167f + 50011f4 commit ec78efd
Show file tree
Hide file tree
Showing 2 changed files with 3 additions and 3 deletions.
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ If the above command is successfuly executed, your model will have been publishe
Evaluate ([Argmax-](https://huggingface.co/argmaxinc/whisperkit-coreml) or developer-published) models on speech recognition datasets:

```shell
whisperkit-evaluate-model --model-version <model-version> --output-dir <output-dir> --dataset {librispeech-debug,librispeech,earnings22}
whisperkit-evaluate-model --model-version <model-version> --output-dir <output-dir> --evaluation-dataset {librispeech-debug,librispeech,earnings22}
```
By default, this command uses the latest `main` branch commits from `WhisperKit` and searches within [Argmax-published](https://huggingface.co/argmaxinc/whisperkit-coreml) model repositories. For optional arguments related to code and model versioning, please see the help menu with `-h`

Expand All @@ -85,7 +85,7 @@ If you would like to evaluate WhisperKit models on your own dataset:
export CUSTOM_EVAL_DATASET="my-dataset-name-on-hub"
export DATASET_REPO_OWNER="my-user-or-org-name-on-hub"
export MODEL_REPO_ID="my-org/my-whisper-repo-name" # if evaluating self-published models
whisperkit-evaluate-model --model-version <model-version> --output-dir <output-dir> --dataset my-dataset-name-on-hub
whisperkit-evaluate-model --model-version <model-version> --output-dir <output-dir> --evaluation-dataset my-dataset-name-on-hub
```

## Python Inference
Expand Down
2 changes: 1 addition & 1 deletion whisperkit/evaluate/evaluate.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def evaluate(whisper_pipeline: Union[pipelines.WhisperPipeline, pipelines.Whispe

logger.info(f"Launching {num_proc} processes to run {whisper_pipeline.__class__.__name__}")
with Pool(num_proc) as pool:
results = list(tqdm.tqdm(pool.map(
results = list(tqdm.tqdm(pool.imap(
partial(evaluate_sample, whisper_pipeline=whisper_pipeline), dataset),
total=len(dataset)
))
Expand Down

0 comments on commit ec78efd

Please sign in to comment.