The Pinyin Analysis plugin integrates Pinyin4j(http://pinyin4j.sourceforge.net/) module into elasticsearch.
Pinyin4j is a popular Java library supporting convertion between Chinese characters and most popular Pinyin systems. The output format of pinyin could be customized.
--------------------------------------------------
| Pinyin4j Analysis Plugin | ElasticSearch |
--------------------------------------------------
| master | 2.1.x -> master|
--------------------------------------------------
| 1.5.0 | 2.1.0 |
--------------------------------------------------
| 1.4.0 | 2.0.x |
--------------------------------------------------
| 1.3.0 | 1.6.x |
--------------------------------------------------
| 1.2.2 | 1.0.x |
--------------------------------------------------
| 1.2.0 | 0.90.x |
--------------------------------------------------
| 1.1.2 | 0.20.x |
--------------------------------------------------
| 1.1.1 | 0.19.x |
--------------------------------------------------
The plugin includes two analyzers: pinyin
and pinyin_first_letter
, two tokenizers: pinyin
and pinyin_first_letter
and two token-filters: pinyin
and pinyin_first_letter
.
1.Create a index for doing some tests
curl -XPUT http://localhost:9200/medcl/ -d' { "index" : { "analysis" : { "analyzer" : { "pinyin_analyzer" : { "tokenizer" : "my_pinyin", "filter" : "word_delimiter ] } }, "tokenizer" : { "my_pinyin" : { "type" : "pinyin", "first_letter" : "none", "padding_char" : " " } } } } }'
2.Analyzing a chinese name, such as 刘德华
http://localhost:9200/medcl/_analyze?text=%e5%88%98%e5%be%b7%e5%8d%8e&analyzer=pinyin_analyzer {"tokens":[{"token":"liu de hua ","start_offset":0,"end_offset":3,"type":"word","position":1}]}
3.That's all, have fun.
optional config:
the parameter first_letter
can be set to: prefix
, append
, only
and none
, default value is none
examples:
first_letter
set toprifix
and padding_char
is set to ""
the analysis result will be:
{"tokens":[{"token":"ldhliudehua","start_offset":0,"end_offset":3,"type":"word","position":1}]}
and if we set first_letter
to only
,the result will be:
{"tokens":[{"token":"ldh","start_offset":0,"end_offset":3,"type":"word","position":1}]}
also first_letter
to append
{"tokens":[{"token":"liu de hua ldh","start_offset":0,"end_offset":3,"type":"word","position":1}]}
----------additional----------example-----------------------
if you wanna do a auto-complete with people's name,combining with the magic of pinyin,and it's very easy now,here is the detail instructions:
1.Index setting
curl -XPOST http://localhost:9200/medcl/_close curl -XPUT http://localhost:9200/medcl/_settings -d' { "index" : { "analysis" : { "analyzer" : { "pinyin_analyzer" : { "tokenizer" : "my_pinyin", "filter" : ["word_delimiter","nGram"] } }, "tokenizer" : { "my_pinyin" : { "type" : "pinyin", "first_letter" : "prefix", "padding_char" : " " } } } } }' curl -XPOST http://localhost:9200/medcl/_open
2.Create mapping
curl -XPOST http://localhost:9200/medcl/folks/_mapping -d' { "folks": { "properties": { "name": { "type": "multi_field", "fields": { "name": { "type": "string", "store": "no", "term_vector": "with_positions_offsets", "analyzer": "pinyin_analyzer", "boost": 10 }, "primitive": { "type": "string", "store": "yes", "analyzer": "keyword" } } } } } }'
3.Indexing
curl -XPOST http://localhost:9200/medcl/folks/andy -d'{"name":"刘德华"}'
4.Have a try
curl http://localhost:9200/medcl/folks/_search?q=name:%e5%88%98 curl http://localhost:9200/medcl/folks/_search?q=name:%e5%88%98%e5%be%b7 curl http://localhost:9200/medcl/folks/_search?q=name:liu curl http://localhost:9200/medcl/folks/_search?q=name:ldh curl http://localhost:9200/medcl/folks/_search?q=name:dehua
5.Use Pinyin-TokenFilter (contributed by @wangweiwei)
curl -XPUT http://localhost:9200/medcl1/ -d' { "index" : { "analysis" : { "analyzer" : { "user_name_analyzer" : { "tokenizer" : "whitespace", "filter" : "pinyin_filter" } }, "filter" : { "pinyin_filter" : { "type" : "pinyin", "first_letter" : "only", "padding_char" : "" } } } } }'
Token Test:刘德华 张学友 郭富城 黎明 四大天王
curl -XGET http://localhost:9200/medcl/_analyze?text=%e5%88%98%e5%be%b7%e5%8d%8e+%e5%bc%a0%e5%ad%a6%e5%8f%8b+%e9%83%ad%e5%af%8c%e5%9f%8e+%e9%bb%8e%e6%98%8e+%e5%9b%9b%e5%a4%a7%e5%a4%a9%e7%8e%8b&analyzer=user_name_analyzer {"tokens":[{"token":"ldh","start_offset":0,"end_offset":3,"type":"word","position":1},{"token":"zxy","start_offset":4,"end_offset":7,"type":"word","position":2},{"token":"gfc","start_offset":8,"end_offset":11,"type":"word","position":3},{"token":"lm","start_offset":12,"end_offset":14,"type":"word","position":4},{"token":"sdtw","start_offset":15,"end_offset":19,"type":"word","position":5}]}