-
Notifications
You must be signed in to change notification settings - Fork 0
License
angechen/PMSGCN-SSE
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This is the code for the paper: PMSGCN: parallel multi-scale graph convolution network for estimating perceptually similar 3D human poses from monocular images in Pytorch. Dependencies: cuda 9.0 Python 3.6 Pytorch 0.4.1. matplotlib==3.1.1 opencv-python==4.1.1.26 tqdm==4.46.0 Argument adjustment in opt1.py: --root_path: change to the path where this project is stored on the server --input_inverse_intrinsic:If decoupling the camera intrinsic parameters from PMSGCN, it equals to True and corresponding --in_channels equals to 3; If not decoupling the parameters, it is false and corresponding --in_channels equals to 2. --use_projected_2dgt:default value is False. If it is True, then PMSGCN uses the 2D poses projected from the 3D labels as the network input. Dataset setup: 2D pose detections and corresponding 3D labels are put in data/dataset which can be downloaded from: https://drive.google.com/drive/folders/1r8cz9abdru6YRZVOGWjQ1vwsW10D3v62?usp=sharing To train the PMSGCN, run: python main_graph.py --show_protocol2 To test the PMSGCN, run: python main_graph.py --pro_train 0 --show_protocol2 --stgcn_reload 1 --previous_dir ‘/PMSGCN_SSE/PMSGCN/results/pms_gcn/no_pose_refine/ --stgcn_model 'model_pms_gcn_xx_eva_post_xxxx.pth’
About
No description, website, or topics provided.
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published