-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
962ed3a
commit dd7bbf5
Showing
4 changed files
with
132 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
//! 2D transformation matrix functions. | ||
use crate::{FloatOps, Mat3, Vec2}; | ||
use num::traits::NumAssign; | ||
|
||
/// Creates a 3x3 transformation matrix that represents a translation of (x, y). | ||
/// | ||
/// # Examples | ||
/// ``` | ||
/// # use munum::{transform2d, vec2}; | ||
/// assert_eq!(*transform2d::translation(vec2(2_i32, 3)).as_ref(), [1, 0, 0, 0, 1, 0, 2, 3, 1]); | ||
/// ``` | ||
pub fn translation<T: Copy + NumAssign>(v: Vec2<T>) -> Mat3<T> { | ||
let mut result = Mat3::identity(); | ||
result[(0, 2)] = v[0]; | ||
result[(1, 2)] = v[1]; | ||
result | ||
} | ||
|
||
/// Creates a 3x3 transformation matrix that represents a scaling of (x, y). | ||
/// | ||
/// # Examples | ||
/// ``` | ||
/// # use munum::{transform2d, vec2}; | ||
/// assert_eq!(*transform2d::scaling(vec2(2_i32, 3)).as_ref(), [2, 0, 0, 0, 3, 0, 0, 0, 1]); | ||
/// ``` | ||
pub fn scaling<T: Copy + NumAssign>(v: Vec2<T>) -> Mat3<T> { | ||
let mut result = Mat3::identity(); | ||
result[(0, 0)] = v[0]; | ||
result[(1, 1)] = v[1]; | ||
result | ||
} | ||
|
||
/// Creates a 3x3 transformation matrix that represents a rotation in couterclockwise direction. | ||
/// | ||
/// # Examples | ||
/// ``` | ||
/// # use munum::{transform2d, assert_float_eq}; | ||
/// assert_float_eq!( | ||
/// transform2d::rotation(core::f32::consts::FRAC_PI_6).as_ref(), | ||
/// &[3_f32.sqrt()/2., 0.5, 0., -0.5, 3_f32.sqrt()/2., 0., 0., 0., 1.] | ||
/// ); | ||
/// ``` | ||
#[inline] | ||
pub fn rotation<T: Copy + FloatOps + NumAssign>(theta: T) -> Mat3<T> { | ||
let mut result = Mat3::identity(); | ||
let cos_theta = theta.cos(); | ||
let sin_theta = theta.sin(); | ||
result[(0, 0)] = cos_theta; | ||
result[(1, 0)] = sin_theta; | ||
result[(0, 1)] = T::zero() - sin_theta; | ||
result[(1, 1)] = cos_theta; | ||
result | ||
} | ||
|
||
/// Creates a 3x3 matrix that represents a transformation in TRS order (= translation * rotation * scaling). | ||
/// | ||
/// # Examples | ||
/// ``` | ||
/// # use munum::{transform2d, vec2, assert_float_eq}; | ||
/// assert_float_eq!( | ||
/// transform2d::transformation( | ||
/// vec2(11., 13.), | ||
/// core::f32::consts::FRAC_PI_6, | ||
/// vec2(5., 7.), | ||
/// ).as_ref(), | ||
/// &[5.*3_f32.sqrt()/2., 2.5, 0., -3.5, 7.*3_f32.sqrt()/2., 0., 11., 13., 1.] | ||
/// ); | ||
/// ``` | ||
pub fn transformation<T: Copy + FloatOps + NumAssign>( | ||
translation: Vec2<T>, | ||
rotation_angle: T, | ||
scaling: Vec2<T>, | ||
) -> Mat3<T> { | ||
// Start with rotation | ||
let mut result: Mat3<T> = rotation(rotation_angle); | ||
|
||
// Post-multiply scaling | ||
for c in 0..2 { | ||
for r in 0..2 { | ||
result[(r, c)] *= scaling[c]; | ||
} | ||
} | ||
|
||
// Apply translation | ||
result[(0, 2)] = translation[0]; | ||
result[(1, 2)] = translation[1]; | ||
|
||
result | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters