Maintainer: Andrew Chen, [email protected]
License: Artistic License 2.0
Partial embeddings (PAREs) provide a framework for removal of
confounding effects from any distance-based dimension reduction method
including
The R package can be installed via devtools by running the following code
# install.packages("devtools")
devtools::install_github("andy1764/PARE", build_vignettes = FALSE)
Then, you can load this package via
library(PARE)
PARE
leverages the existing R implementations for dimension reduction
methods. Below is an example call for partial UMAP in the iris
dataset, which removes the species effects:
library(PARE)
library(umap)
pe <- pare(iris[,-5], ~ Species, data = iris, umap)
A vignette is provided for the pare
function, which also covers other
dimension reduction methods. Once the suggested dependencies are installed, please run:
devtools::install_github("andy1764/PARE", build_vignettes = TRUE, force = TRUE)
vignette("pare")
If using the PARE methodology, please cite the following preprint:
Chen, A. A., Clark, K., Dewey, B., DuVal, A., Pellegrini, N., Nair, G., Jalkh, Y., Khalil, S., Zurawski, J., Calabresi, P., Reich, D., Bakshi, R., Shou, H., Shinohara, R. T., Initiative, the A. D. N., & Cooperative, the N. A. I. in M. S. (2023). Deconfounded Dimension Reduction via Partial Embeddings (p. 2023.01.10.523448). bioRxiv. https://doi.org/10.1101/2023.01.10.523448