-
Notifications
You must be signed in to change notification settings - Fork 1
/
fit_prob_obj.py
101 lines (86 loc) · 3.65 KB
/
fit_prob_obj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import argparse
import os
from utils import read_mpcat40, pred_subset_to_mpcat40, estimate_floor_height
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
parser.add_argument("sequence_name",
type=str)
parser.add_argument("vertices_path",
type=str)
parser.add_argument("contact_probs_path",
type=str)
parser.add_argument("sample_count",
type=int)
args = parser.parse_args()
sequence_name = args.sequence_name
vertices = np.load(open(args.vertices_path, "rb"))
label_names, color_coding_rgb = read_mpcat40()
contact_probs = np.load(open(args.contact_labels_path, "rb"))
contact_labels = np.argmax(contact_labels, axis=-1)
contact_labels = contact_labels.squeeze()
# Map contact labels to predicted subset
vertices_down = []
contact_labels_mapped = []
for frame in range(contact_labels.shape[0]):
contact_labels_mapped.append(pred_subset_to_mpcat40[contact_labels[frame]])
vertices_down.append(vertices[frame * 8])
vertices = np.array(vertices_down)
contact_labels = np.array(contact_labels_mapped)
# Load fitting parameters
classes_eps = config.classes_eps
pcd_down_voxel_size = config.voxel_size
voting_eps = config.voting_eps
cluster_min_points = config.cluster_min_points
if sequence_name in config.params:
params = config.params[sequence_name]
else:
print("Sequence specific parameters undefined, using default")
print()
print()
params = config.params["default"]
grid_search_contact_weight = params["grid_search_contact_weight"]
grid_search_pen_thresh = params["grid_search_pen_thresh"]
grid_search_classes_pen_weight = params["grid_search_classes_pen_weight"]
lr = params["lr"]
opt_steps = params["opt_steps"]
opt_contact_weight = params["opt_contact_weight"]
opt_pen_thresh = params["opt_pen_thresh"]
opt_classes_pen_weight = params["opt_classes_pen_weight"]
# Get cuda
if torch.cuda.is_available():
print("Using cuda")
device = torch.device("cuda")
else:
print("Using cpu")
device = torch.device("cpu")
print()
print()
# Create human SDF
human_meshes = read_sequence_human_mesh(args.vertices_path)
merged_human_meshes = merge_meshes(human_meshes)
grid_dim = 256
human_sdf_base_path = os.path.join("models", sequence_name, "human")
if not os.path.exists(human_sdf_base_path):
os.makedirs(human_sdf_base_path)
sdf_path = os.path.join(human_sdf_base_path, "sdf.npy")
json_path = os.path.join(human_sdf_base_path, "sdf.json")
if os.path.exists(sdf_path) and os.path.exists(json_path):
print("Human SDF already exists, reading from file")
json_sdf_info = json.load(open(json_path, 'r'))
centroid = np.asarray(json_sdf_info['centroid']) # 3
extents = np.asarray(json_sdf_info['extents']) # 3
sdf = np.load(sdf_path)
else:
print("Generating human SDF")
centroid, extents, sdf = generate_sdf(trimesh_from_o3d(merged_human_meshes), json_path, sdf_path)
sdf = torch.Tensor(sdf).float().to(device)
centroid = torch.Tensor(centroid).float().to(device)
extents = torch.Tensor(extents).float().to(device)
print()
print()
# Use most probable contact labels for floor estimation
floor_height = estimate_floor_height(vertices, contact_labels)
print("Estimated floor height is", floor_height)
print()
print()
# Use most probable non-contact labels for contact clustering