Edafa is a simple wrapper that implements Test Time Augmentations (TTA) on images for computer vision problems like: segmentation, classification, super-resolution, Pansharpening, etc. TTAs guarantees better results in most of the tasks.
Applying different transformations to test images and then average for more robust results.
pip install edafa
The easiest way to get up and running is to follow example notebooks for segmentation and classification showing TTA effect on performance.
The whole process can be done in 4 steps:
- Import Predictor class based on your task category: Segmentation (
SegPredictor
) or Classification (ClassPredictor
)
from edafa import SegPredictor
- Inherit Predictor class and implement the main function
predict_patches(self,patches)
: where your model takes image patches (numpy.ndarray) and return prediction (numpy.ndarray)
class myPredictor(SegPredictor):
def __init__(self,model,*args,**kwargs):
super().__init__(*args,**kwargs)
self.model = model
def predict_patches(self,patches):
return self.model.predict(patches)
- Create an instance of you class
p = myPredictor(model,patch_size,model_output_channels,conf_file_path)
- Call
predict_images()
to run the prediction process
p.predict_images(images,overlap=0)
Configuration file is a json file containing two pieces of information
- Augmentations to apply (augs). Supported augmentations:
- NO : No augmentation
- ROT90 : Rotate 90 degrees
- ROT180 : Rotate 180 degrees
- ROT270 : Rotate 270 degrees
- FLIP_UD : Flip upside-down
- FLIP_LR : Flip left-right
- BRIGHT : Change image brightness randomly
- CONTRAST : Change image contrast randomly
- GAUSSIAN : Add random gaussian noise
- GAMMA : Perform gamma correction with random gamma
- Combination of the results (mean). Supported mean types:
- ARITH : Arithmetic mean
- GEO : Geometric mean
- Number of bits image (default is 8-bits) (bits).
Example of a conf file in json
format
{
"augs":["NO",
"FLIP_UD",
"FLIP_LR"],
"mean":"ARITH",
"bits":8
}
Example of a conf file in yaml
format
augs: [NO,FLIP_UD,FLIP_LR]
mean: ARITH
bits: 8
You can either pass file path (json or yaml) or the actual json text to conf
parameter.
All contributions are welcomed. Please make sure that all tests passed before pull request. To run tests
nosetests