Skip to content

Commit

Permalink
Merge pull request DeltaRCM#36 from ericbarefoot/numbajit
Browse files Browse the repository at this point in the history
BUMBANUMBA
  • Loading branch information
amoodie authored Jun 3, 2020
2 parents 998e892 + bfde84f commit 9214263
Show file tree
Hide file tree
Showing 12 changed files with 554 additions and 235 deletions.
11 changes: 5 additions & 6 deletions docs/source/reference/shared_tools/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,11 @@
shared_tools
*********************************

The tools are defined in ``pyDeltaRCM.shared_tools``.
The tools are defined in ``pyDeltaRCM.shared_tools``.

.. currentmodule:: pyDeltaRCM

.. currentmodule:: pyDeltaRCM.shared_tools
.. autosummary::
:toctree: ../../_autosummary

.. autosummary::
:toctree: ../../_autosummary

shared_tools
shared_tools
13 changes: 6 additions & 7 deletions pyDeltaRCM/init_tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,9 @@
import logging
import time
import yaml

from . import shared_tools

# tools for initiating deltaRCM model domain


Expand Down Expand Up @@ -97,7 +100,7 @@ def import_files(self):
if self.seed is not None:
if self.verbose >= 2:
print("setting random seed to %s " % str(self.seed))
np.random.seed(self.seed)
shared_tools.set_random_seed(self.seed)

def set_constants(self):

Expand All @@ -113,17 +116,13 @@ def set_constants(self):
[-1, 0, 1],
[-sqrt05, 0, sqrt05]])

self.iwalk = np.array([[-1, 0, 1],
[-1, 0, 1],
[-1, 0, 1]])
self.iwalk = shared_tools.get_iwalk()

self.jvec = np.array([[-sqrt05, -1, -sqrt05],
[0, 0, 0],
[sqrt05, 1, sqrt05]])

self.jwalk = np.array([[-1, -1, -1],
[0, 0, 0],
[1, 1, 1]])
self.jwalk = shared_tools.get_jwalk()
self.dxn_iwalk = [1, 1, 0, -1, -1, -1, 0, 1]
self.dxn_jwalk = [0, 1, 1, 1, 0, -1, -1, -1]
self.dxn_dist = \
Expand Down
65 changes: 27 additions & 38 deletions pyDeltaRCM/sed_tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,12 @@

from netCDF4 import Dataset

from .shared_tools import shared_tools
from . import shared_tools

# tools for sediment routing algorithms and deposition/erosion


class sed_tools(shared_tools):
class sed_tools(object):

def sed_route(self):
"""route all sediment"""
Expand Down Expand Up @@ -183,51 +183,36 @@ def sed_parcel(self, theta_sed, sed, px, py):
# choose next with weights

it += 1
ind = (px, py)

depth_ind = self.pad_depth[
ind[0] - 1 + 1:ind[0] + 2 + 1, ind[1] - 1 + 1:ind[1] + 2 + 1]
cell_type_ind = self.pad_cell_type[
ind[0] - 1 + 1:ind[0] + 2 + 1, ind[1] - 1 + 1:ind[1] + 2 + 1]
stage_nbrs = self.pad_stage[px - 1 + 1:px + 2 + 1, py - 1 + 1:py + 2 + 1]
depth_ind = self.pad_depth[px - 1 + 1:px + 2 + 1, py - 1 + 1:py + 2 + 1]
cell_type_ind = self.pad_cell_type[px - 1 + 1:px + 2 + 1, py - 1 + 1:py + 2 + 1]

w1 = np.maximum(0, (self.qx[ind] * self.jvec +
self.qy[ind] * self.ivec))
w2 = depth_ind ** theta_sed
weight = (w1 * w2 / self.distances)
weights = shared_tools.get_weight_at_cell(
(px, py),
stage_nbrs.flatten(), depth_ind.flatten(), cell_type_ind.flatten(),
self.stage[px, py], self.qx[px, py], self.qy[px, py],
self.ivec.flatten(), self.jvec.flatten(), self.distances.flatten(),
self.dry_depth, self.gamma, theta_sed)

weight[depth_ind <= self.dry_depth] = 0.0001
weight[cell_type_ind == -2] = 0
new_cell = shared_tools.random_pick(weights)

if ind[0] == 0:
weight[0, :] = 0

new_cell = self.random_pick(np.cumsum(weight.flatten()))

jstep = self.iwalk.flat[new_cell]
istep = self.jwalk.flat[new_cell]
dist = np.sqrt(istep * istep + jstep * jstep)
dist, istep, jstep, _ = shared_tools.get_steps(new_cell, self.iwalk.flat[:], self.jwalk.flat[:])

# deposition and erosion

if sed == 'sand': # sand
if dist > 0:
# deposition in current cell
self.qs[px, py] = (self.qs[px, py] +
self.Vp_res / 2 / self.dt / self.dx)
px = px + istep
py = py + jstep

if dist > 0:
# deposition in downstream cell
self.qs[px, py] = (self.qs[px, py] +
self.Vp_res / 2 / self.dt / self.dx)

depoPart = self.Vp_res / 2 / self.dt / self.dx

px, py, self.qs = shared_tools.partition_sand(self.qs, depoPart, py, px, dist, istep, jstep)

self.sand_dep_ero(px, py)

if sed == 'mud': # mud

px = px + istep
py = py + jstep
px = px + jstep
py = py + istep

self.mud_dep_ero(px, py)

Expand All @@ -240,8 +225,10 @@ def sand_route(self):
theta_sed = self.theta_sand

num_starts = int(self.Np_sed * self.f_bedload)
start_indices = [self.random_pick_inlet(
self.inlet) for x in range(num_starts)]
inlet_weights = np.ones_like(self.inlet)
start_indices = [
self.inlet[shared_tools.random_pick(inlet_weights / sum(inlet_weights))]
for x in range(num_starts)]

for np_sed in range(num_starts):

Expand Down Expand Up @@ -281,8 +268,10 @@ def mud_route(self):
theta_sed = self.theta_mud

num_starts = int(self.Np_sed * (1 - self.f_bedload))
start_indices = [self.random_pick_inlet(
self.inlet) for x in range(num_starts)]
inlet_weights = np.ones_like(self.inlet)
start_indices = [
self.inlet[shared_tools.random_pick(inlet_weights / sum(inlet_weights))]
for x in range(num_starts)]

for np_sed in range(num_starts):

Expand Down
211 changes: 190 additions & 21 deletions pyDeltaRCM/shared_tools.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,39 +3,208 @@
import numpy as np

import time
from numba import njit, jit, typed

# tools shared between deltaRCM water and sediment routing


class shared_tools(object):
def get_iwalk():
return np.array([[-1, 0, 1],
[-1, 0, 1],
[-1, 0, 1]])

def random_pick(self, probs):
"""
Randomly pick a number weighted by array probabilities (len 9)
Return the index of the selected weight in array probs
Takes a numpy array that is the precalculated cumulative probability
around the cell flattened to 1D.
"""

idx = probs.searchsorted(np.random.uniform(0, probs[-1]))
def get_jwalk():
return np.array([[-1, -1, -1],
[0, 0, 0],
[1, 1, 1]])

return idx

def random_pick_inlet(self, choices, probs=None):
"""
Randomly pick a number from array choices weighted by array probs
Values in choices are column indices
@njit
def set_random_seed(_seed):
np.random.seed(_seed)

Return a tuple of the randomly picked index for row 0
"""

if not probs:
probs = np.ones(len(choices))
@njit
def get_random_uniform(N):
return np.random.uniform(0, 1)

cutoffs = np.cumsum(probs)
idx = cutoffs.searchsorted(np.random.uniform(0, cutoffs[-1]))

return choices[idx]
@njit
def partition_sand(qs, depoPart, py, px, dist, istep, jstep):
'''Spread sand between two cells
'''
if dist > 0:
# deposition in current cell
qs[px, py] += depoPart

px = px + jstep
py = py + istep

if dist > 0:
# deposition in downstream cell
qs[px, py] += depoPart
return px, py, qs


@njit
def get_steps(new_cells, iwalk, jwalk):
'''find the values giving the next step
'''
istep = iwalk[new_cells]
jstep = jwalk[new_cells]
dist = np.sqrt(istep * istep + jstep * jstep)

astep = dist != 0

return dist, istep, jstep, astep


@njit
def update_dirQfield(qfield, dist, inds, astep, dirstep):
'''update unit vector of water flux in x or y
'''
for i, ii in enumerate(inds):
if astep[i]:
qfield[ii] += dirstep[i] / dist[i]
return qfield


@njit
def update_absQfield(qfield, dist, inds, astep, Qp_water, dx):
'''Update norm of water flux vector
'''
for i, ii in enumerate(inds):
if astep[i]:
qfield[ii] += Qp_water / dx / 2
return qfield


@njit
def random_pick(prob):
"""
Randomly pick a number weighted by array probabilities (len 9)
Return the index of the selected weight in array probs
Takes a numpy array that is the precalculated cumulative probability
around the cell flattened to 1D.
"""

arr = np.arange(len(prob))
return arr[np.searchsorted(np.cumsum(prob), get_random_uniform(1))]


@njit
def custom_unravel(i, shape):
"""Function to unravel indexes for 2D array
"""
if i > (shape[1] * shape[0]):
raise IndexError("Index is out of matrix bounds")
x = i // shape[1]
y = i % shape[1]
return x, y


@njit
def custom_ravel(tup, shape):
"""Function to ravel indexes for 2D array
"""
if tup[0] > shape[0] or tup[1] > shape[1]:
raise IndexError("Index is out of matrix bounds")
x = tup[0] * shape[1]
y = tup[1]
return x + y


@njit
def check_for_loops(indices, inds, it, L0, loopedout, domain_shape, CTR, free_surf_flag):

looped = typed.List() # numba typed list for iteration
for i in np.arange(len(indices)):
row = indices[i, :]
v = len(row[row > 0]) != len(set(row[row > 0]))
looped.append(v)
travel = (0, it)

for n in range(indices.shape[0]):
ind = inds[n]
if looped[n] and (ind > 0) and (max(travel) > L0):
loopedout[n] += 1
px, py = custom_unravel(ind, domain_shape)
Fx = px - 1
Fy = py - CTR

Fw = np.sqrt(Fx**2 + Fy**2)

if Fw != 0:
px = px + np.round(Fx / Fw * 5.)
py = py + np.round(Fy / Fw * 5.)

px = max(px, L0)
px = int(min(domain_shape[0] - 2, px))

py = max(1, py)
py = int(min(domain_shape[1] - 2, py))

nind = custom_ravel((px, py), domain_shape)

inds[n] = nind

free_surf_flag[n] = -1

return inds, loopedout, free_surf_flag


@njit
def calculate_new_ind(indices, new_cells, iwalk, jwalk, domain_shape):
newbies = []
for p, q in zip(indices, new_cells):
if q != 4:
ind_tuple = custom_unravel(p, domain_shape)
new_ind = (ind_tuple[0] + jwalk[q],
ind_tuple[1] + iwalk[q])
newbies.append(custom_ravel(new_ind, domain_shape))
else:
newbies.append(0)

return np.array(newbies)


@njit
def get_weight_at_cell(ind, stage_nbrs, depth_nbrs, ct_nbrs, stage, qx, qy,
ivec, jvec, distances, dry_depth, gamma, theta):

weight_sfc = np.maximum(0, (stage - stage_nbrs) / distances)

weight_int = np.maximum(0, (qx * jvec + qy * ivec) / distances)

if ind[0] == 0:
weight_sfc[:3] = np.nan
weight_int[:3] = np.nan

drywall = (depth_nbrs <= dry_depth) | (ct_nbrs == -2)
weight_sfc[drywall] = np.nan
weight_int[drywall] = np.nan

if np.nansum(weight_sfc) > 0:
weight_sfc = weight_sfc / np.nansum(weight_sfc)

if np.nansum(weight_int) > 0:
weight_int = weight_int / np.nansum(weight_int)

weight = gamma * weight_sfc + (1 - gamma) * weight_int
weight = depth_nbrs ** theta * weight
weight[depth_nbrs <= dry_depth] = 0

nanWeight = np.isnan(weight)

if np.any(weight[~nanWeight] != 0):
weight = weight / np.nansum(weight)
weight[nanWeight] = 0
else:
weight[~nanWeight] = 1 / len(weight[~nanWeight])
weight[nanWeight] = 0
return weight



def _get_version():
Expand Down
Loading

0 comments on commit 9214263

Please sign in to comment.