Skip to content

Commit

Permalink
Add en version of seminar 8, #15
Browse files Browse the repository at this point in the history
  • Loading branch information
Alexandr Katrutsa committed Jun 28, 2018
1 parent ef8f9e2 commit 087d4b9
Show file tree
Hide file tree
Showing 2 changed files with 122 additions and 0 deletions.
Binary file added 08-Cones/Seminar8en.pdf
Binary file not shown.
122 changes: 122 additions & 0 deletions 08-Cones/Seminar8en.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
\documentclass[12pt]{beamer}
\usepackage{../latex-sty/mypres}
\usepackage[utf8]{inputenc}
\usepackage[T2A]{fontenc}
\usepackage[english]{babel}

\expandafter\def\expandafter\insertshorttitle\expandafter{%
\insertshorttitle\hfill%
\insertframenumber\,/\,\inserttotalframenumber}
\title[Seminar 8]{Optimization methods. \\
Seminar 8. Tangent and feasible direction cones and sharp extremum}
\author{Alexandr Katrutsa}
\institute{Moscow Institute of Physics and Technology\\
Department of Control and Applied Mathematics}
\date{\today}

\begin{document}
\begin{frame}
\maketitle
\end{frame}

\begin{frame}{Reminder}
\begin{itemize}
\item Subdifferential
\item Conditional subdifferential
\item Normal cone
\end{itemize}
\end{frame}

\begin{frame}{Feasible direction cone}

\begin{block}{Definition}
Feasible direction cone for a set $G \subset \bbR^n$ in a point $\bx_0 \in G$ is a set $\Gamma(\bx_0 | G) = \{ \bs \in \bbR^n | \bx_0 + \alpha\bs \in G, \; 0 \leq \alpha \leq \overline{\alpha}(\bs) \}$, where $\overline{\alpha}(\bs) > 0$.
\end{block}

\begin{block}{Definition for convex set}
Feasible direction cone for a \emph{convex} set $X \subset \bbR^n$ in a point$\bx_0 \in X$ is a set $\Gamma(\bx_0 | X) = \{ \bs \in \bbR^n | \bs = \lambda (\bx - \bx_0), \; \lambda > 0, \forall \bx \in X \}$.
\end{block}

How normal cone and feasible direction cone are related?

\end{frame}

\begin{frame}{Example}
\begin{block}{Useful fact}
Assume $G = \{ \bx \in \bbR^n | \varphi_i(\bx) \leq 0, \; i = \overline{0,n-1}; \; \varphi_i(\bx) = \ba_i^{\T}\bx - b_i = 0, \; i = \overline{n, m} \}$. Then if $\varphi_i(\bx)$ is convex and set $G$ is regular, then
\vspace{-4mm}
\[
\Gamma(\bx_0|G) = \{ \bs \in \bbR^n | \nabla \varphi_i(\bx_0)^{\T} \bs \leq 0, i \in I, \ba^{\T}_i \bs = 0, i = \overline{n,m} \}
\vspace{-4mm}
\]
and \vspace{-4mm}
\[
\Gamma^*(\bx_0|G) = \left \{ \bp \in \bbR^n \middle| \bp = \sum\limits_{i = n}^m \lambda_i\ba_i - \sum\limits_{i \in I} \mu_i \nabla\varphi_i(\bx_0) \right \},
\vspace{-4mm}
\]
where $\lambda_i \in \bbR$, $\mu_i \geq 0$, $\bx_0 \in G$ and $I = \{i: \varphi_i(\bx_0) = 0, \; i = \overline{0,n-1}\}$.
\end{block}
Find $\Gamma(\bx_0|X)$ и $\Gamma^*(\bx_0|X)$ for the following sets:
$X = \{ \bx \in \bbR^2 | x^2_1 + 2x^2_2 \leq 3, \; x_1 + x_2 = 0 \}$.
\end{frame}

\begin{frame}{Tangent cone}
\begin{block}{Definition}
Tangent cone to the set $G$ in the point $\bx_0 \in \overline{G}$ is the following set $T(\bx_0 |G) = \{ \lambda \bz | \lambda > 0, \; \exists \{\bx_k\} \subset G, \; \bx_k \rightarrow \bx_0, \bx_k \neq \bx_0, \; \lim\limits_{k \rightarrow \infty} \frac{\bx_k - \bx_0}{\|\bx_k - \bx_0\|_2} = \bz \}$
\end{block}

\begin{block}{Remark}
Tangent cone consists of all directions such that sequences from the set $G$ converge to the point $x_0$ in this direction.
\end{block}

\begin{block}{Lemma}
If $G$ is a convex set, then $T(\bx_0|G) = \Gamma(\bx_0|G)$.
\end{block}
\end{frame}

\begin{frame}{Useful fact}
Assume a set $G = \{\bx \in \bbR^n | \varphi_i(\bx) \leq 0, i = \overline{0, n-1} \; \varphi_i(\bx) = 0, i = \overline{n, m} \}$ is regular, then
\vspace{-4mm}
\[
T(\bx_0|G) = \{ \bz \in \bbR^n | \nabla \varphi^{\T}_i(\bx_0)\bz \leq 0, i \in I, \; \nabla \varphi^{\T}_i(\bx_0)\bz = 0, i = \overline{n,m} \}
\vspace{-4mm}
\]
and \vspace{-4mm}
\[
T^*(\bx_0|G) = \left \{ \bp \in \bbR^n \middle| \bp = \sum\limits_{i = n}^m \lambda_i \nabla \varphi_i(\bx_0) - \sum\limits_{i \in I} \mu_i \nabla \varphi_i(\bx_0) \right \},
\]
where $\mu_i \geq 0$, $\lambda_i \in \bbR$, $I = \{i | \varphi_i(\bx_0) = 0, i = \overline{0, n-1} \}$

Example: find $T(\bx_0|G)$ and $T^*(\bx_0|G)$ for a set $G = \{\bx \in \bbR^2 | x_1 + x_2 \leq 1, \; x^2_1 + 2x_2^2 = 1 \}$
\end{frame}

\begin{frame}{Sharp extremum}

\begin{block}{Definition}
A point $\bx^*$ is a point of sharp extremum of the function $f$ on the set $G$, if there exists $\gamma > 0$ such that $f(\bx) - f(\bx^*) \geq \gamma \|\bx - \bx^*\|_2, \; \forall x \in G$.
\end{block}

\begin{block}{Lemma}
Assume $f$ is a differentiable function on $G \subset \bbR^n$.
Then $\bx^*$ is a point of sharp extremum of function $f$ on the set $G$ iff there exists $\alpha > 0$, such that $\nabla f^{\T}(\bx^*) \bz \geq \alpha > 0, \; \bz \in T(\bx^*|G), \| \bz \|_2 = 1$.
\end{block}

\begin{block}{Examples}
\begin{itemize}
\item $x^2_1 + x^2_2 \rightarrow \extr\limits_{G}, \; G = \{(x_1, x_2) | x^2_1 + 2x_2^2 = 2, \; x_1 + x_2 \leq 1 \}$
\item $x_1 + 2x_2 \rightarrow \extr\limits_{G}$
\end{itemize}
\end{block}

\end{frame}

\begin{frame}{Recap}
\begin{itemize}
\item Feasible direction cone
\item Tangent cone
\item Sharp extremum
\end{itemize}
\end{frame}


\end{document}

0 comments on commit 087d4b9

Please sign in to comment.