-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Alexandr Katrutsa
committed
Jun 28, 2018
1 parent
ef8f9e2
commit 087d4b9
Showing
2 changed files
with
122 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
\documentclass[12pt]{beamer} | ||
\usepackage{../latex-sty/mypres} | ||
\usepackage[utf8]{inputenc} | ||
\usepackage[T2A]{fontenc} | ||
\usepackage[english]{babel} | ||
|
||
\expandafter\def\expandafter\insertshorttitle\expandafter{% | ||
\insertshorttitle\hfill% | ||
\insertframenumber\,/\,\inserttotalframenumber} | ||
\title[Seminar 8]{Optimization methods. \\ | ||
Seminar 8. Tangent and feasible direction cones and sharp extremum} | ||
\author{Alexandr Katrutsa} | ||
\institute{Moscow Institute of Physics and Technology\\ | ||
Department of Control and Applied Mathematics} | ||
\date{\today} | ||
|
||
\begin{document} | ||
\begin{frame} | ||
\maketitle | ||
\end{frame} | ||
|
||
\begin{frame}{Reminder} | ||
\begin{itemize} | ||
\item Subdifferential | ||
\item Conditional subdifferential | ||
\item Normal cone | ||
\end{itemize} | ||
\end{frame} | ||
|
||
\begin{frame}{Feasible direction cone} | ||
|
||
\begin{block}{Definition} | ||
Feasible direction cone for a set $G \subset \bbR^n$ in a point $\bx_0 \in G$ is a set $\Gamma(\bx_0 | G) = \{ \bs \in \bbR^n | \bx_0 + \alpha\bs \in G, \; 0 \leq \alpha \leq \overline{\alpha}(\bs) \}$, where $\overline{\alpha}(\bs) > 0$. | ||
\end{block} | ||
|
||
\begin{block}{Definition for convex set} | ||
Feasible direction cone for a \emph{convex} set $X \subset \bbR^n$ in a point$\bx_0 \in X$ is a set $\Gamma(\bx_0 | X) = \{ \bs \in \bbR^n | \bs = \lambda (\bx - \bx_0), \; \lambda > 0, \forall \bx \in X \}$. | ||
\end{block} | ||
|
||
How normal cone and feasible direction cone are related? | ||
|
||
\end{frame} | ||
|
||
\begin{frame}{Example} | ||
\begin{block}{Useful fact} | ||
Assume $G = \{ \bx \in \bbR^n | \varphi_i(\bx) \leq 0, \; i = \overline{0,n-1}; \; \varphi_i(\bx) = \ba_i^{\T}\bx - b_i = 0, \; i = \overline{n, m} \}$. Then if $\varphi_i(\bx)$ is convex and set $G$ is regular, then | ||
\vspace{-4mm} | ||
\[ | ||
\Gamma(\bx_0|G) = \{ \bs \in \bbR^n | \nabla \varphi_i(\bx_0)^{\T} \bs \leq 0, i \in I, \ba^{\T}_i \bs = 0, i = \overline{n,m} \} | ||
\vspace{-4mm} | ||
\] | ||
and \vspace{-4mm} | ||
\[ | ||
\Gamma^*(\bx_0|G) = \left \{ \bp \in \bbR^n \middle| \bp = \sum\limits_{i = n}^m \lambda_i\ba_i - \sum\limits_{i \in I} \mu_i \nabla\varphi_i(\bx_0) \right \}, | ||
\vspace{-4mm} | ||
\] | ||
where $\lambda_i \in \bbR$, $\mu_i \geq 0$, $\bx_0 \in G$ and $I = \{i: \varphi_i(\bx_0) = 0, \; i = \overline{0,n-1}\}$. | ||
\end{block} | ||
Find $\Gamma(\bx_0|X)$ и $\Gamma^*(\bx_0|X)$ for the following sets: | ||
$X = \{ \bx \in \bbR^2 | x^2_1 + 2x^2_2 \leq 3, \; x_1 + x_2 = 0 \}$. | ||
\end{frame} | ||
|
||
\begin{frame}{Tangent cone} | ||
\begin{block}{Definition} | ||
Tangent cone to the set $G$ in the point $\bx_0 \in \overline{G}$ is the following set $T(\bx_0 |G) = \{ \lambda \bz | \lambda > 0, \; \exists \{\bx_k\} \subset G, \; \bx_k \rightarrow \bx_0, \bx_k \neq \bx_0, \; \lim\limits_{k \rightarrow \infty} \frac{\bx_k - \bx_0}{\|\bx_k - \bx_0\|_2} = \bz \}$ | ||
\end{block} | ||
|
||
\begin{block}{Remark} | ||
Tangent cone consists of all directions such that sequences from the set $G$ converge to the point $x_0$ in this direction. | ||
\end{block} | ||
|
||
\begin{block}{Lemma} | ||
If $G$ is a convex set, then $T(\bx_0|G) = \Gamma(\bx_0|G)$. | ||
\end{block} | ||
\end{frame} | ||
|
||
\begin{frame}{Useful fact} | ||
Assume a set $G = \{\bx \in \bbR^n | \varphi_i(\bx) \leq 0, i = \overline{0, n-1} \; \varphi_i(\bx) = 0, i = \overline{n, m} \}$ is regular, then | ||
\vspace{-4mm} | ||
\[ | ||
T(\bx_0|G) = \{ \bz \in \bbR^n | \nabla \varphi^{\T}_i(\bx_0)\bz \leq 0, i \in I, \; \nabla \varphi^{\T}_i(\bx_0)\bz = 0, i = \overline{n,m} \} | ||
\vspace{-4mm} | ||
\] | ||
and \vspace{-4mm} | ||
\[ | ||
T^*(\bx_0|G) = \left \{ \bp \in \bbR^n \middle| \bp = \sum\limits_{i = n}^m \lambda_i \nabla \varphi_i(\bx_0) - \sum\limits_{i \in I} \mu_i \nabla \varphi_i(\bx_0) \right \}, | ||
\] | ||
where $\mu_i \geq 0$, $\lambda_i \in \bbR$, $I = \{i | \varphi_i(\bx_0) = 0, i = \overline{0, n-1} \}$ | ||
|
||
Example: find $T(\bx_0|G)$ and $T^*(\bx_0|G)$ for a set $G = \{\bx \in \bbR^2 | x_1 + x_2 \leq 1, \; x^2_1 + 2x_2^2 = 1 \}$ | ||
\end{frame} | ||
|
||
\begin{frame}{Sharp extremum} | ||
|
||
\begin{block}{Definition} | ||
A point $\bx^*$ is a point of sharp extremum of the function $f$ on the set $G$, if there exists $\gamma > 0$ such that $f(\bx) - f(\bx^*) \geq \gamma \|\bx - \bx^*\|_2, \; \forall x \in G$. | ||
\end{block} | ||
|
||
\begin{block}{Lemma} | ||
Assume $f$ is a differentiable function on $G \subset \bbR^n$. | ||
Then $\bx^*$ is a point of sharp extremum of function $f$ on the set $G$ iff there exists $\alpha > 0$, such that $\nabla f^{\T}(\bx^*) \bz \geq \alpha > 0, \; \bz \in T(\bx^*|G), \| \bz \|_2 = 1$. | ||
\end{block} | ||
|
||
\begin{block}{Examples} | ||
\begin{itemize} | ||
\item $x^2_1 + x^2_2 \rightarrow \extr\limits_{G}, \; G = \{(x_1, x_2) | x^2_1 + 2x_2^2 = 2, \; x_1 + x_2 \leq 1 \}$ | ||
\item $x_1 + 2x_2 \rightarrow \extr\limits_{G}$ | ||
\end{itemize} | ||
\end{block} | ||
|
||
\end{frame} | ||
|
||
\begin{frame}{Recap} | ||
\begin{itemize} | ||
\item Feasible direction cone | ||
\item Tangent cone | ||
\item Sharp extremum | ||
\end{itemize} | ||
\end{frame} | ||
|
||
|
||
\end{document} |