Skip to content

amazon-science/video-contrastive-learning

Video Contrastive Learning with Global Context (VCLR)

This is the official PyTorch implementation of our VCLR paper.

@article{kuang2021vclr,
  title={Video Contrastive Learning with Global Context},
  author={Haofei Kuang, Yi Zhu, Zhi Zhang, Xinyu Li, Joseph Tighe, Sören Schwertfeger, Cyrill Stachniss, Mu Li},
  journal={arXiv preprint arXiv:2108.02722},
  year={2021}
}

Install dependencies

  • environments
    conda create --name vclr python=3.7
    conda activate vclr
    conda install numpy scipy scikit-learn matplotlib scikit-image
    pip install torch==1.7.1 torchvision==0.8.2
    pip install opencv-python tqdm termcolor gcc7 ffmpeg tensorflow==1.15.2
    pip install mmcv-full==1.2.7

Prepare datasets

Please refer to PREPARE_DATA to prepare the datasets.

Prepare pretrained MoCo weights

In this work, we follow SeCo and use the pretrained weights of MoCov2 as initialization.

cd ~
git clone https://github.com/amazon-research/video-contrastive-learning.git
cd video-contrastive-learning
mkdir pretrain && cd pretrain
wget https://dl.fbaipublicfiles.com/moco/moco_checkpoints/moco_v2_200ep/moco_v2_200ep_pretrain.pth.tar
cd ..

Self-supervised pretraining

bash shell/main_train.sh

Checkpoints will be saved to ./results

Downstream tasks

Linear evaluation

In order to evaluate the effectiveness of self-supervised learning, we conduct a linear evaluation (probing) on Kinetics400 dataset. Basically, we first extract features from the pretrained weight and then train a SVM classifier to see how the learned features perform.

bash shell/eval_svm.sh
  • Results

    Arch Pretrained dataset Epoch Pretrained model Acc. on K400
    ResNet50 Kinetics400 400 Download link 64.1

Video retrieval

bash shell/eval_retrieval.sh
  • Results

    Arch Pretrained dataset Epoch Pretrained model R@1 on UCF101 R@1 on HMDB51
    ResNet50 Kinetics400 400 Download link 70.6 35.2
    ResNet50 UCF101 400 Download link 46.8 17.6

Action recognition & action localization

Here, we use mmaction2 for both tasks. If you are not familiar with mmaction2, you can read the official documentation.

Installation

  • Step1: Install mmaction2

    To make sure the results can be reproduced, please use our forked version of mmaction2 (version: 0.11.0):

    conda activate vclr
    cd ~
    git clone https://github.com/KuangHaofei/mmaction2
    
    cd mmaction2
    pip install -v -e .
  • Step2: Prepare the pretrained weights

    Our pretrained backbone have different format with the backbone of mmaction2, it should be transferred to mmaction2 format. We provide the transferred version of our K400 pretrained weights, TSN and TSM. We also provide the script for transferring weights, you can find it here.

    Moving the pretrained weights to checkpoints directory:

    cd ~/mmaction2
    mkdir checkpoints
    wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm.pth
    wget https://haofeik-data.s3.amazonaws.com/VCLR/pretrained/vclr_mm_tsm.pth

Action recognition

Make sure you have prepared the dataset and environments following the previous step. Now suppose you are in the root directory of mmaction2, follow the subsequent steps to fine tune the TSN or TSM models for action recognition.

For each dataset, the train and test setting can be found in the configuration files.

  • UCF101

    • config file: tsn_ucf101.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_ucf101.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_ucf101.py \
        work_dirs/vclr/ucf101/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • HMDB51

    • config file: tsn_hmdb51.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_hmdb51.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_hmdb51.py \
        work_dirs/vclr/hmdb51/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • SomethingSomethingV2: TSN

    • config file: tsn_sthv2.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_sthv2.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_sthv2.py \
        work_dirs/vclr/tsn_sthv2/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • SomethingSomethingV2: TSM

    • config file: tsm_sthv2.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsm/vclr/tsm_sthv2.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsm/vclr/tsm_sthv2.py \
        work_dirs/vclr/tsm_sthv2/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • ActivityNet

    • config file: tsn_activitynet.py
    • train command:
      ./tools/dist_train.sh configs/recognition/tsn/vclr/tsn_activitynet.py 8 \
        --validate --seed 0 --deterministic
    • test command:
      python tools/test.py configs/recognition/tsn/vclr/tsn_activitynet.py \
        work_dirs/vclr/tsn_activitynet/latest.pth \
        --eval top_k_accuracy mean_class_accuracy --out result.json
  • Results

    Arch Dataset Finetuned model Acc.
    TSN UCF101 Download link 85.6
    TSN HMDB51 Download link 54.1
    TSN SomethingSomethingV2 Download link 33.3
    TSM SomethingSomethingV2 Download link 52.0
    TSN ActivityNet Download link 71.9

Action localization

  • Step 1: Follow the previous section, suppose the finetuned model is saved at work_dirs/vclr/tsn_activitynet/latest.pth

  • Step 2: Extract ActivityNet features

    cd ~/mmaction2/tools/data/activitynet/
    
    python tsn_feature_extraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \
      --data-list /home/ubuntu/data/ActivityNet/anet_train_video.txt \
      --output-prefix /home/ubuntu/data/ActivityNet/rgb_feat \
      --modality RGB --ckpt /home/ubuntu/mmaction2/work_dirs/vclr/tsn_activitynet/latest.pth
    
    python tsn_feature_extraction.py --data-prefix /home/ubuntu/data/ActivityNet/rawframes \
      --data-list /home/ubuntu/data/ActivityNet/anet_val_video.txt \
      --output-prefix /home/ubuntu/data/ActivityNet/rgb_feat \
      --modality RGB --ckpt /home/ubuntu/mmaction2/work_dirs/vclr/tsn_activitynet/latest.pth
    
    python activitynet_feature_postprocessing.py \
      --rgb /home/ubuntu/data/ActivityNet/rgb_feat \
      --dest /home/ubuntu/data/ActivityNet/mmaction_feat

    Note, the root directory of ActivityNey is /home/ubuntu/data/ActivityNet/ in our case. Please replace it according to your real directory.

  • Step 3: Train and test the BMN model

    • train
      cd ~/mmaction2
      ./tools/dist_train.sh configs/localization/bmn/bmn_acitivitynet_feature_vclr.py 2 \
        --work-dir work_dirs/vclr/bmn_activitynet --validate --seed 0 --deterministic --bmn
    • test
      python tools/test.py configs/localization/bmn/bmn_acitivitynet_feature_vclr.py \
        work_dirs/vclr/bmn_activitynet/latest.pth \
        --bmn --eval AR@AN --out result.json
  • Results

    Arch Dataset Finetuned model AUC AR@100
    BMN ActivityNet Download link 65.5 73.8

Feature visualization

We provide our feature visualization code at here.

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •