Skip to content

alter-kaker/polyanya

 
 

Repository files navigation

Polyanya - Compromise-free Pathfinding on a Navigation Mesh

MIT/Apache 2.0 Release Doc Crate

Implementation of Polyanya in Rust! Polyanya is a any-angle path planning algorithm.

A WASM demo made with Bevy is available here.

Usage

use glam::Vec2;
use polyanya::*;

fn main() {
    // Build a mesh from a list of vertices and polygons
    let mesh = Mesh::new(
        vec![
            Vertex::new(Vec2::new(0., 6.), vec![0, -1]),           // 0
            Vertex::new(Vec2::new(2., 5.), vec![0, -1, 2]),        // 1
            Vertex::new(Vec2::new(5., 7.), vec![0, 2, -1]),        // 2
            Vertex::new(Vec2::new(5., 8.), vec![0, -1]),           // 3
            Vertex::new(Vec2::new(0., 8.), vec![0, -1]),           // 4
            Vertex::new(Vec2::new(1., 4.), vec![1, -1]),           // 5
            Vertex::new(Vec2::new(2., 1.), vec![1, -1]),           // 6
            Vertex::new(Vec2::new(4., 1.), vec![1, -1]),           // 7
            Vertex::new(Vec2::new(4., 2.), vec![1, -1, 2]),        // 8
            Vertex::new(Vec2::new(2., 4.), vec![1, 2, -1]),        // 9
            Vertex::new(Vec2::new(7., 4.), vec![2, -1, 4]),        // 10
            Vertex::new(Vec2::new(10., 7.), vec![2, 4, 6, -1, 3]), // 11
            Vertex::new(Vec2::new(7., 7.), vec![2, 3, -1]),        // 12
            Vertex::new(Vec2::new(11., 8.), vec![3, -1]),          // 13
            Vertex::new(Vec2::new(7., 8.), vec![3, -1]),           // 14
            Vertex::new(Vec2::new(7., 0.), vec![5, 4, -1]),        // 15
            Vertex::new(Vec2::new(11., 3.), vec![4, 5, -1]),       // 16
            Vertex::new(Vec2::new(11., 5.), vec![4, -1, 6]),       // 17
            Vertex::new(Vec2::new(12., 0.), vec![5, -1]),          // 18
            Vertex::new(Vec2::new(12., 3.), vec![5, -1]),          // 19
            Vertex::new(Vec2::new(13., 5.), vec![6, -1]),          // 20
            Vertex::new(Vec2::new(13., 7.), vec![6, -1]),          // 21
            Vertex::new(Vec2::new(1., 3.), vec![1, -1]),           // 22
        ],
        vec![
            Polygon::new(vec![0, 1, 2, 3, 4], true),           // 0
            Polygon::new(vec![5, 22, 6, 7, 8, 9], true),       // 1
            Polygon::new(vec![1, 9, 8, 10, 11, 12, 2], false), // 2
            Polygon::new(vec![12, 11, 13, 14], true),          // 3
            Polygon::new(vec![10, 15, 16, 17, 11], false),     // 4
            Polygon::new(vec![15, 18, 19, 16], true),          // 5
            Polygon::new(vec![11, 17, 20, 21], true),          // 6
        ],
    );

    // Get the path between two points
    let from = Vec2::new(12.0, 0.0);
    let to = Vec2::new(3.0, 1.0);
    let path = mesh.path(from, to);

    assert_eq!(
        path.unwrap().path,
        vec![
            Vec2::new(7.0, 4.0),
            Vec2::new(4.0, 2.0),
            Vec2::new(3.0, 1.0)
        ]
    );
}

The code above will build the following mesh, with polygons marked in green, and vertices in red:

example mesh

Original Work

Check the cpp implementation.

index;micro;successor_calls;generated;pushed;popped;pruned_post_pop;length;gridcost
0;4960.92;6974;4368;4313;3823;21;1123.222637572437;1199.73

This crate seems to generate a few more nodes, but tends to be faster than the cpp implementation. There are a few known cases to still improve it:

  • collinear optimisation, when a search node root and interval are all on a same line
  • triangle optimisation, when searching in a triangle polygon
  • when an intersection is very close to a vertex, it sometimes generates an extra slim search node
  • searching start and end nodes is costlier

Compiling this crate with feature stats will output almost the same level of information as the default cpp implementation output.

index;micros;successor_calls;generated;pushed;popped;pruned_post_pop;length
0;2990.083;6983;7748;4314;3828;21;1123.2228

The verbose feature will give the same output as setting verbose to 1.

        pushing: root=(993, 290); left=(989, 303); right=(1001, 288); f=1020.21, g=0.00
        pushing: root=(993, 290); left=(984, 301); right=(988, 303); f=1016.98, g=0.00
        pushing: root=(993, 290); left=(982, 300); right=(984, 301); f=1016.06, g=0.00
        pushing: root=(993, 290); left=(994, 285); right=(981, 299); f=1014.84, g=0.00
popped off: root=(993, 290); left=(994, 285); right=(981, 299); f=1014.84, g=0.00
        intermediate: root=(993, 290); left=(988, 282); right=(981, 299); f=1014.84, g=0.00
        pushing: root=(993, 290); left=(977, 299); right=(980, 299); f=1015.14, g=0.00
        pushing: root=(993, 290); left=(984, 280); right=(976, 297); f=1014.84, g=0.00
popped off: root=(993, 290); left=(984, 280); right=(976, 297); f=1014.84, g=0.00
        pushing: root=(993, 290); left=(973, 296); right=(976, 297); f=1014.84, g=0.00
        pushing: root=(993, 290); left=(970, 295); right=(973, 296); f=1014.86, g=0.00
        pushing: root=(993, 290); left=(967, 294); right=(970, 295); f=1015.01, g=0.00
        pushing: root=(993, 290); left=(965, 293); right=(967, 294); f=1015.28, g=0.00
        pushing: root=(993, 290); left=(977, 276); right=(965, 293); f=1015.58, g=0.00
        pushing: root=(993, 290); left=(983, 279); right=(979, 277); f=1023.95, g=0.00
popped off: root=(993, 290); left=(973, 296); right=(976, 297); f=1014.84, g=0.00
popped off: root=(993, 290); left=(970, 295); right=(973, 296); f=1014.86, g=0.00
popped off: root=(993, 290); left=(967, 294); right=(970, 295); f=1015.01, g=0.00
popped off: root=(993, 290); left=(977, 299); right=(980, 299); f=1015.14, g=0.00
popped off: root=(993, 290); left=(965, 293); right=(967, 294); f=1015.28, g=0.00
popped off: root=(993, 290); left=(977, 276); right=(965, 293); f=1015.58, g=0.00
        pushing: root=(993, 290); left=(963, 292); right=(965, 293); f=1015.58, g=0.00
        pushing: root=(993, 290); left=(961, 291); right=(963, 292); f=1015.94, g=0.00
        pushing: root=(993, 290); left=(971, 273); right=(959, 289); f=1017.13, g=0.00
...

The mesh files used in tests are coming from the cpp implementation and are available under MIT license.

About

Pathfinding using Polyanya

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 100.0%