Skip to content

Commit

Permalink
Edits
Browse files Browse the repository at this point in the history
  • Loading branch information
triangle-man committed Nov 2, 2023
1 parent 23fa4e3 commit ed4b4a3
Showing 1 changed file with 33 additions and 7 deletions.
40 changes: 33 additions & 7 deletions reference/all-the-maths-we-know.tex
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ \subsection*{Sets}

\end{tabularx}

%% ------------------------------------------------------------
%% ============================================================

\subsection*{Pairs and tuples}
\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}}
Expand All @@ -79,7 +79,7 @@ \subsection*{Pairs and tuples}

\end{tabularx}

%% ------------------------------------------------------------
%% ============================================================

\subsection*{Maps}
\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}}
Expand Down Expand Up @@ -160,11 +160,11 @@ \section*{Vector spaces}

\defn{Vector} & An element of a vector space. \\

\defn{Subspace} & A subspace, $U\subset V$, is a subset of a vector space,
$V$, that is itself a vector space with respect to the addition and
scalar multiplication inherited from~$V$.

\defn{Subspace} & A subset of a vector space that is itself a vector
space with respect to the addition and scalar multiplication inherited
from the larger space.

Equivalently: A subset, $U \subset V$ of a vector space, $V$, is a \emph{subspace} if, for all $u, v\in U$ and number $\alpha$, the combination $u+\alpha \cdot v$ is also in~$U$.
\end{tabularx}

\section*{Examples of vector spaces}
Expand All @@ -188,8 +188,34 @@ \section*{Examples of vector spaces}
(\alpha f)(x) \isdef \alpha f(x).
\end{equation*}
(The notation “$(f+g)(x)$” means “the function $f+g$, where $+$ is addition of functions, evaluated at the point $x$.”)

\end{tabularx}

%% ============================================================

\section*{Combining vector spaces}
\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}}
\toprule

\defn{Sum} & (This definition is not commonplace.) For $U_1, U_2,
\dotsc, U_n$ subspaces of $V$, their sum is the set of all sums of vectors from the $U_i$:
\begin{equation*}
U_1+\dots +U_n \isdef \bigl\{ v_1 + \dots + v_n \bigm\vert v_i \in U_i \bigr\}.
\end{equation*}
Equivalently, it is the set of all sums from $\cup_i U_i$ (since sums
from within the same $U_i$ are already elements of that
$U_i$). Equivalently, it is the span of $\cup_i U_i$. \\

\defn{Direct sum} & (Version 1: This definition is from Axler.) The
sum of subspaces, $U_1+\dots + U_n$, is called a \emph{direct sum} if
the $U_i$ satisfy the following property: if $v_1+\dots +v_n =
\mathbold{0}$, where $v_i\in U_i$, then each of the $v_i$
is~$\mathbold{0}$.

If the sum of the $U_i$ is a direct sum, it is written $U_1\oplus \dots\oplus U_n$. \\


\end{tabularx}


\end{multicols*}
\end{document}

0 comments on commit ed4b4a3

Please sign in to comment.