Skip to content

Commit

Permalink
GitHub maths ...
Browse files Browse the repository at this point in the history
  • Loading branch information
triangle-man committed Nov 8, 2023
1 parent c1b5f99 commit cbcd546
Showing 1 changed file with 6 additions and 6 deletions.
12 changes: 6 additions & 6 deletions exercises/axler-1c.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ $\alpha\in\mathbf{F}$, and $v,w\in V$:
2. $\alpha v \in V$; and
3. $v+w \in V$.

#### (a) $\{(x_1, x_2, x_3)\in \mathbf{F}^3 \mid x_1 +2 x_2 +3 x_3 =0\}$
#### (a) $`\{(x_1, x_2, x_3)\in \mathbf{F}^3 \mid x_1 +2 x_2 +3 x_3 =0\}`$

This set is a subspace.

Expand All @@ -28,22 +28,22 @@ This set is a subspace.
w_3)$ so that $v+w= (v_1+w_1, v_2+w_2, v_3+w_3)$. Thus $(v_1+w_1) +
2(v_2+w_2) + 3(v_3+w_3) = (v_1+2v_2+3v_3)+(w_1+2w_2+3w_3) = 0$.

#### (b) $\{(x_1, x_2, x_3)\in \mathbf{F}^3 \mid x_1 +2 x_2 +3 x_3 =4\}$
#### (b) $`\{(x_1, x_2, x_3)\in \mathbf{F}^3 \mid x_1 +2 x_2 +3 x_3 =4\}`$

This set is not a subspace.

In particular, the zero vector is not an element since $x_1+2x_2+3x_3
\neq 4$ when $(x_1, x_2, x_3) = (0,0,0)$

#### (c) $\{(x_1, x_2, x_3)\in \mathbf{F}^3 \mid x_1 x_2 x_3 = 0\}$
#### (c) $`\{(x_1, x_2, x_3)\in \mathbf{F}^3 \mid x_1 x_2 x_3 = 0\}`$

This set is not a subspace.

For example, both $(1,1,0)$ and $(1,0,1)$ are elements (since the
product of their components is zero) but their sum, $(2,1,1)$ is not
an element (since the product of its components is not zero).

#### (d) $\{(x_1, x_2, x_3)\in \mathbf{F}^3 \mid x_1 = 5 x_3\}$
#### (d) $`\{(x_1, x_2, x_3)\in \mathbf{F}^3 \mid x_1 = 5 x_3\}`$

This set is a subspace.

Expand Down Expand Up @@ -98,8 +98,8 @@ $\mathbf{R}^\infty$? We must check the same three conditions.
zero). Then $\lvert \alpha x_n \rvert = \lvert \alpha \rvert \lvert
x_n\rvert < \epsilon$ for all $n>N$.
3. Sums are in the set. Suppose $$\lim_{n\to\infty} \lvert x_n \rvert = 0$$ and
$$\lim_{n\to\infty} \vert y_n \rvert =0 $$, then it follows that
$$\lim_{n\to\infty} (x_n+y_n) = 0$$. Proof: for $\epsilon>0$ choose
$$\lim_{n\to\infty} \vert y_n \rvert =0,$$ then it follows that
$$\lim_{n\to\infty} (x_n+y_n) = 0.$$ Proof: for $\epsilon>0$ choose
$n$ such that $x_n < \epsilon/2$ and $y_n < \epsilon/2$ for $n>N$.

Thus the set of all sequences with limit zero is a subspace of the
Expand Down

0 comments on commit cbcd546

Please sign in to comment.