Skip to content

Commit

Permalink
Add inner products to all the maths we know
Browse files Browse the repository at this point in the history
  • Loading branch information
triangle-man committed Nov 29, 2024
1 parent b675ef4 commit 549ecc6
Showing 1 changed file with 35 additions and 6 deletions.
41 changes: 35 additions & 6 deletions reference/all-the-maths-we-know.tex
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,8 @@
%\renewcommand{\vec}[1]{mathbold{#1}}
\newcommand{\imag}{\mathrm{i}}
\newcommand{\id}{\mathbold{1}}
%%
\newcommand{\inner}[2]{{\langle #1,#2 \rangle}}
%%
%% Some headings get broken over two lines, and I'd like the box to be as small as possible.
\newlength{\termheaderwd}
%%
Expand Down Expand Up @@ -349,17 +350,16 @@ \section*{Dual space}

%% ============================================================

\section*{Operators}
\section*{Operators I}
\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}}
\toprule
\settowidth{\termheaderwd}{polynomial}
\defn{Operator} & A linear map from a vector space to itself. \\

\parbox[t]{\termheaderwd}{\defn{Invariant\\ subspace}} & A subspace $U \subset V$ is \emph{invariant} under operator $T$ if $T u\in U$ for all $u\in U$. \\
\settowidth{\termheaderwd}{polynomial}%
\parbox[t]{\termheaderwd}{\defn{Invariant\\ subspace}} & A subspace $U \subset V$ is \emph{invariant} under operator $T$ if $T u\in U$ for all $u\in U$. \\

\parbox[t]{\termheaderwd}{\defn{Minimal\\ polynomial}} & Of an operator, $T$ on a finite-dimensional vector space over field~$\mathbold{F}$. The (unique) monic polynomial $p\in\mathcal{P}(\mathbold{F})$ such that $p(T)=0$. (``Monic'' means that the coefficient of the highest-degree term is~1.) \\


\end{tabularx}

%% ============================================================
Expand Down Expand Up @@ -419,7 +419,6 @@ \section*{Matrices}

%% ============================================================


\section*{Eigenvalues}
\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}}
\toprule
Expand All @@ -431,5 +430,35 @@ \section*{Eigenvalues}
\\

\end{tabularx}

%% ============================================================

\section*{Operators II}
\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}}
\toprule
\defn{Commuting} & Operators $A$ and $B$ commute if $AB-BA=0$.
\end{tabularx}

%% ============================================================

\section*{Inner products}
\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}}
\toprule
\settowidth{\termheaderwd}{product}%
\parbox[t]{\termheaderwd}{\defn{Inner\\ product}}
& On a real or complex vector space, $V$, a conjugate-symmetric, positive-definite map $V\times V\to\set{F}$, written $\langle v, w\rangle$ for $v, w\in\set{F}$, which is linear in its first argument (and conjugate linear in its second). That is:
\begin{gather*}
\inner{v}{w} \geq 0 \tag{positive}\\
\inner{v}{v} = 0 \implies v = 0 \tag{definite}\\
\langle v, w\rangle = \overline{\langle w, v\rangle} \tag{conj.\ symm.} \\
\langle v, x+\lambda y\rangle = \langle v,x\rangle + \lambda \langle v, y\rangle \tag{linear} \\
\end{gather*} \\
\defn{Norm} & (Given an inner product) the norm of $v$ is
\begin{equation*}
\| v\| = \sqrt{\inner{v}{v}}.
\end{equation*}
\end{tabularx}


\end{multicols*}
\end{document}

0 comments on commit 549ecc6

Please sign in to comment.