Skip to content

Commit

Permalink
Add entries from 5B and 5C
Browse files Browse the repository at this point in the history
  • Loading branch information
triangle-man committed Sep 20, 2024
1 parent ac433c1 commit 11413b2
Showing 1 changed file with 23 additions and 14 deletions.
37 changes: 23 additions & 14 deletions reference/all-the-maths-we-know.tex
Original file line number Diff line number Diff line change
Expand Up @@ -345,8 +345,18 @@ \section*{Dual space}
\[
U^0 = \{ \tilde{u}\in V^* \mid \tilde{u}(w)=0 \;\text{for all $w\in U$} \}.
\]
\end{tabularx}
\end{tabularx}

%% ============================================================

\section*{Operators}
\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}}
\toprule
\defn{Operator} & A linear map from a vector space to itself. \\

\parbox[t]{\termheaderwd}{\defn{Invariant\\ subspace}} & Of an operator, $T\colon V\to V$. A subspace $U \subset V$ is \emph{invariant} under $T$ if $T u\in U$ for all $u\in U$. \\

\end{tabularx}

%% ============================================================

Expand Down Expand Up @@ -394,27 +404,26 @@ \section*{Matrices}
\defn{Rank} & The rank of a matrix $A_{ij}\in\set{R}^{m,n}$ is the dimension of the span of the $n$ vectors $\vec{c}_j\in \set{R}^m$ where $\vec{c}_j = A_{ij}$ (that is, the $\vec{c}_j$ are the ``columns'' of $A_{ij}$).

The dimension of the span of the ``rows'' of $A_{ij}$ is also the rank.

\\

\parbox[t]{\termheaderwd}{\defn{Upper\\ triangular}} & Of a matrix, having zero for all entries below the diagonal.

\end{tabularx}

%% ============================================================

\section*{Operators}

\section*{Eigenvalues}
\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}}
\toprule
\defn{Operator} & A linear map from a vector space to itself. \\

\parbox[t]{\termheaderwd}{\defn{Invariant\\ subspace}} & Of an operator, $T\colon V\to V$. A subspace $U$ of $V$ is invariant under $T$ if $T u\in U$ for all $u\in U$. \\

\defn{Eigenvalue} &
Of an operator, $T$. A number $\lambda$ such that there exists a vector $v\neq 0$ with $Tv=\lambda v$.

(The vector $v$ is called an \emph{eignvector}.)

\\

\\
\defn{Eigenvector} &
Of an operator, $T$. A non-zero vector, $v$, such that $Tv=\lambda v$ for some number $\lambda$..
\\
\parbox[t]{\termheaderwd}{\defn{Minimal\\ polynomial}} & (Of an operator, $T$ on a finite-dimensional vector space over field~$\mathbold{F}$.) The (unique) monic polynomial $p\in\mathcal{P}(\mathbold{F})$ such that $p(T)=0$. (``Monic'' means ``the coefficient of the highest-degree term is~1.'')
\\
\end{tabularx}

\end{multicols*}
\end{document}

0 comments on commit 11413b2

Please sign in to comment.