-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #203 from alan-turing-institute/lgbm
LightGBM
- Loading branch information
Showing
7 changed files
with
187 additions
and
231 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
import numpy as np | ||
from lightgbm import LGBMRegressor | ||
from scipy.stats import loguniform | ||
from scipy.stats import randint | ||
from scipy.stats import uniform | ||
from sklearn.base import BaseEstimator | ||
from sklearn.base import RegressorMixin | ||
from sklearn.utils.validation import check_array | ||
from sklearn.utils.validation import check_is_fitted | ||
from sklearn.utils.validation import check_X_y | ||
from skopt.space import Categorical | ||
from skopt.space import Integer | ||
from skopt.space import Real | ||
|
||
|
||
class LightGBM(BaseEstimator, RegressorMixin): | ||
"""LightGBM Emulator. | ||
Wraps LightGBM regression from LightGBM. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
boosting_type="gbdt", | ||
num_leaves=31, | ||
max_depth=-1, | ||
learning_rate=0.1, | ||
n_estimators=100, | ||
subsample_for_bin=200000, | ||
objective=None, | ||
class_weight=None, | ||
min_split_gain=0.0, | ||
min_child_weight=0.001, | ||
min_child_samples=20, | ||
subsample=1.0, | ||
# subsample_freq=0.0, | ||
colsample_bytree=1.0, | ||
reg_alpha=0.0, | ||
reg_lambda=0.0, | ||
random_state=None, | ||
n_jobs=1, | ||
importance_type="split", | ||
verbose=-1, | ||
): | ||
"""Initializes a LightGBM object.""" | ||
self.boosting_type = boosting_type | ||
self.num_leaves = num_leaves | ||
self.max_depth = max_depth | ||
self.learning_rate = learning_rate | ||
self.n_estimators = n_estimators | ||
self.subsample_for_bin = subsample_for_bin | ||
self.objective = objective | ||
self.class_weight = class_weight | ||
self.min_split_gain = min_split_gain | ||
self.min_child_weight = min_child_weight | ||
self.min_child_samples = min_child_samples | ||
self.subsample = subsample | ||
# self.subsample_freq = subsample_freq | ||
self.colsample_bytree = colsample_bytree | ||
self.reg_alpha = reg_alpha | ||
self.reg_lambda = reg_lambda | ||
self.random_state = random_state | ||
self.n_jobs = n_jobs | ||
self.importance_type = importance_type | ||
self.verbose = verbose | ||
|
||
def fit(self, X, y, sample_weight=None, **kwargs): | ||
"""Fits the emulator to the data.""" | ||
X, y = check_X_y( | ||
X, y, multi_output=self._more_tags()["multioutput"], y_numeric=True | ||
) | ||
|
||
self.n_features_in_ = X.shape[1] | ||
|
||
self.model_ = LGBMRegressor( | ||
boosting_type=self.boosting_type, | ||
num_leaves=self.num_leaves, | ||
max_depth=self.max_depth, | ||
learning_rate=self.learning_rate, | ||
n_estimators=self.n_estimators, | ||
subsample_for_bin=self.subsample_for_bin, | ||
objective=self.objective, | ||
class_weight=self.class_weight, | ||
min_split_gain=self.min_split_gain, | ||
min_child_weight=self.min_child_weight, | ||
min_child_samples=self.min_child_samples, | ||
subsample=self.subsample, | ||
colsample_bytree=self.colsample_bytree, | ||
reg_alpha=self.reg_alpha, | ||
reg_lambda=self.reg_lambda, | ||
random_state=self.random_state, | ||
n_jobs=self.n_jobs, | ||
importance_type=self.importance_type, | ||
verbose=self.verbose, | ||
) | ||
|
||
self.model_.fit(X, y, sample_weight=sample_weight) | ||
self.is_fitted_ = True | ||
return self | ||
|
||
def predict(self, X): | ||
"""Predicts the output of the emulator for a given input.""" | ||
X = check_array(X) | ||
check_is_fitted(self, "is_fitted_") | ||
y_pred = self.model_.predict(X) | ||
return y_pred | ||
|
||
def get_grid_params(self, search_type="random"): | ||
"""Returns the grid parameters of the emulator.""" | ||
param_space_random = { | ||
"boosting_type": ["gbdt", "dart"], | ||
"num_leaves": randint(10, 100), | ||
"max_depth": randint(-1, 12), | ||
"learning_rate": loguniform(0.001, 0.1), | ||
"n_estimators": randint(50, 1000), | ||
# "colsample_bytree": uniform(0.5, 1.0), | ||
"reg_alpha": loguniform(0.001, 1), | ||
"reg_lambda": loguniform(0.001, 1), | ||
} | ||
|
||
param_space_bayes = { | ||
"boosting_type": Categorical(["gbdt", "dart"]), | ||
"num_leaves": Integer(10, 100), | ||
"max_depth": Integer(-1, 12), | ||
"learning_rate": Real(0.001, 0.1, prior="log-uniform"), | ||
"n_estimators": Integer(50, 1000), | ||
# "colsample_bytree": Real(0.5, 1.0), | ||
"reg_alpha": Real(0.001, 1, prior="log-uniform"), | ||
"reg_lambda": Real(0.001, 1, prior="log-uniform"), | ||
} | ||
|
||
if search_type == "random": | ||
param_space = param_space_random | ||
elif search_type == "bayes": | ||
param_space = param_space_bayes | ||
|
||
return param_space | ||
|
||
@property | ||
def model_name(self): | ||
return self.__class__.__name__ | ||
|
||
def _more_tags(self): | ||
return {"multioutput": False} |
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.