I am Ikram Ali
- Data Scientist @ Arbisoft
- Working on Deep learning projects for Kayak
- Github.com/akkefa
- Linkedin.com/in/akkefa
- Measuring the execution time.
- Insight of run time performance of a given piece of code.
- Frequently used to optimize execution time.
- Used to analyze other characteristics such as memory consumption.
- Measure Performance
You can use a profiler to answer questions like these:
- Why is this program slow?
- Why does it slow my computer to a crawl?
- What is actually happening when this code executes?
- Is there anything I can improve?
- How much memory consumed by program?
- How much time taken by each function execution?
-
“If You Can’t Measure It, You Can’t Manage It.”
-
Writing efficient code saves money in modern "cloud economy" (e.g. you need fewer VM instances).
-
Even if you don't use clouds, a particular problem domain can have strict performance requirements (e.g. when you have to process a chunk of data in time before the next chunk arrives).
The time command is available in *nix systems.
$ time python some_program.py
real 0m4.536s
user 0m3.411s
sys 0m0.979s
- Easy to use
- Very limited information
- Not very deterministic
- Not available on Windows
time.time() statements
import time
initial_time = time.time()
time.sleep(1)
final_time = time.time()
print('Duration: {}'.format(final_time - initial_time))
Duration: 1.0898
- Easy to use
- Simple to understand
- Very limited information
- Not very deterministic
- Manual code modification and analysis
import timeit
print('Plus:', timeit.timeit("['Hello world: ' + str(n) for n in range(100)]", number=1000))
print('Format:', timeit.timeit("['Hello world: {0}'.format(n) for n in range(100)]",
number=1000))
print('Percent:', timeit.timeit("['Hello world: %s' % n for n in range(100)]", number=1000))
- Easy to use
- Simple to understand
- Measure execution time of small code snippets
- Simple code only
- Not very deterministic
- Have to manually create runnable code snippets
- Manual analysis
Best approach: cProfile
- Python comes with two profiling tools, profile and cProfile.
- Both share the same API, and should act the same.
>>> import cProfile
>>> cProfile.run('2 + 2')
3 function calls in 0.000 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'}
# slow.py
import time
def main():
sum = 0
for i in range(10):
sum += expensive(i // 2)
return sum
def expensive(t):
time.sleep(t)
return t
if __name__ == '__main__':
print(main())
python -m cProfile slow.py
25 function calls in 20.030 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
10 0.000 0.000 20.027 2.003 slow.py:11(expensive)
1 0.002 0.002 20.030 20.030 slow.py:2(<module>)
1 0.000 0.000 20.027 20.027 slow.py:5(main)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'objects}
1 0.000 0.000 0.000 0.000 {print}
1 0.000 0.000 0.000 0.000 {range}
10 20.027 2.003 20.027 2.003 {time.sleep}
ncalls Total the number of calls of a function
tottime for the total time spent in the given function
cumtime is the cumulative time spent in this and all sub functions.
filename:lineno(function) provides the respective data of each function
python -m cProfile -s tottime slow.py
25 function calls in 20.015 seconds
Ordered by: **internal time**
ncalls **tottime** percall cumtime percall filename:lineno(function)
10 **20.015** 2.001 20.015 2.001 {built-in method time.sleep}
1 **0.000** 0.000 0.000 0.000 {built-in method builtins.print}
1 **0.000** 0.000 20.015 20.015 slow.py:6(main)
10 **0.000** 0.000 20.015 2.001 slow.py:13(expensive)
1 **0.000** 0.000 20.015 20.015 slow.py:3(<module>)
1 **0.000** 0.000 20.015 20.015 {built-in method builtins.exec}
1 **0.000** 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
python -m cProfile -s ncalls slow.py
25 function calls in 20.015 seconds
Ordered by: **call count**
**ncalls** tottime percall cumtime percall filename:lineno(function)
**10** 20.020 2.002 20.020 2.002 {built-in method time.sleep}
**10** 0.000 0.000 20.020 2.002 slow.py:13(expensive)
**1** 0.000 0.000 20.020 20.020 {built-in method builtins.exec}
**1** 0.000 0.000 0.000 0.000 {built-in method builtins.print}
**1** 0.000 0.000 20.020 20.020 slow.py:6(main)
**1** 0.000 0.000 20.020 20.020 slow.py:3(<module>)
**1** 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
def main():
sum = 0
for i in range(10):
sum += expensive(i // 2)
return sum
def expensive(t):
time.sleep(t)
return t
if __name__ == '__main__':
pr = cProfile.Profile()
pr.enable()
main()
pr.disable()
pr.print_stats()
25 function calls in 20.030 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
10 0.000 0.000 20.027 2.003 slow.py:11(expensive)
1 0.002 0.002 20.030 20.030 slow.py:2(<module>)
1 0.000 0.000 20.027 20.027 slow.py:5(main)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'objects}
1 0.000 0.000 0.000 0.000 {print}
1 0.000 0.000 0.000 0.000 {range}
10 20.027 2.003 20.027 2.003 {time.sleep}
if __name__ == '__main__':
pr = cProfile.Profile()
pr.enable()
main()
pr.disable()
**pr.dump_stats("profile.output")**
- You can use pstats to format the output in various ways.
- pstats provides sorting options. ( calls, time, cumulative )
import pstats
p = pstats.Stats("profile.output")
p.strip_dirs().sort_stats("calls").print_stats()
23 function calls in 20.019 seconds
Ordered by: call count
ncalls tottime percall cumtime percall filename:lineno(function)
10 20.019 2.002 20.019 2.002 {built-in method time.sleep}
10 0.000 0.000 20.019 2.002 slow.py:14(expensive)
1 0.000 0.000 0.000 0.000 {built-in method builtins.print}
1 0.000 0.000 20.019 20.019 slow.py:7(main)
pip install snakeviz
$ snakeviz profile.output
- Snakeviz provides two ways to explore profiler data
- Summaries Times
- You can choose the sorting criterion in the output table
pip install pycallgraph
$ pycallgraph graphviz -- python slow.py
- Visual extension of cProfile.
- Understand code structure and Flow
- Summaries Times
- Darker color represent more time spent.
- line_profiler will profile the time individual lines of code take to execute.
- https://github.com/rkern/line_profiler
- Monitoring memory consumption of a process.
- line-by-line analysis of memory consumption.
- https://pypi.org/project/memory_profiler/
https://github.com/akkefa/pycon-python-performance-profiling/profiling-demo.ipynb
Linkedin.com/in/akkefa
Contact : [email protected]