Skip to content

akkefa/pycon-python-performance-profiling

Repository files navigation

Python Performance Profiling

Python performance profiling

HELLO!

I am Ikram Ali

  • Data Scientist @ Arbisoft
  • Working on Deep learning projects for Kayak
  • Github.com/akkefa
  • Linkedin.com/in/akkefa

What is Profiling?

Python performance profiling

Profiling Definition?

  • Measuring the execution time.
  • Insight of run time performance of a given piece of code.
  • Frequently used to optimize execution time.
  • Used to analyze other characteristics such as memory consumption.

What is Python Profiling?

  • Measure Performance

Why Profile?

You can use a profiler to answer questions like these:
  • Why is this program slow?
  • Why does it slow my computer to a crawl?
  • What is actually happening when this code executes?
  • Is there anything I can improve?
  • How much memory consumed by program?
  • How much time taken by each function execution?

Why You should care about Performance

  • “If You Can’t Measure It, You Can’t Manage It.”

  • Writing efficient code saves money in modern "cloud economy" (e.g. you need fewer VM instances).

  • Even if you don't use clouds, a particular problem domain can have strict performance requirements (e.g. when you have to process a chunk of data in time before the next chunk arrives).

Available options for measuring Performance

Command Line

time Module

timeit Module

cProfile Module

Command Line

The time command is available in *nix systems.

$ time python some_program.py
real 0m4.536s
user 0m3.411s
sys 0m0.979s
  • Easy to use
  • Very limited information
  • Not very deterministic
  • Not available on Windows

Python time Module

time.time() statements

import time
initial_time = time.time()
time.sleep(1)
final_time = time.time()
print('Duration: {}'.format(final_time - initial_time))
Duration: 1.0898
  • Easy to use
  • Simple to understand
  • Very limited information
  • Not very deterministic
  • Manual code modification and analysis

Python timeit Module

import timeit

print('Plus:', timeit.timeit("['Hello world: ' + str(n) for n in range(100)]", number=1000))
print('Format:', timeit.timeit("['Hello world: {0}'.format(n) for n in range(100)]",
number=1000))
print('Percent:', timeit.timeit("['Hello world: %s' % n for n in range(100)]", number=1000))
  • Easy to use
  • Simple to understand
  • Measure execution time of small code snippets
  • Simple code only
  • Not very deterministic
  • Have to manually create runnable code snippets
  • Manual analysis

cProfile Module

Best approach: cProfile

  • Python comes with two profiling tools, profile and cProfile.
  • Both share the same API, and should act the same.
>>> import cProfile
>>> cProfile.run('2 + 2')
3 function calls in 0.000 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'}

Running a script with cProfile

# slow.py
import time
def main():
    sum = 0
    for i in range(10):
    sum += expensive(i // 2)
    return sum

def expensive(t):
    time.sleep(t)
    return t

if __name__ == '__main__':
    print(main())
python -m cProfile slow.py
25 function calls in 20.030 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
10 0.000 0.000 20.027 2.003 slow.py:11(expensive)
1 0.002 0.002 20.030 20.030 slow.py:2(<module>)
1 0.000 0.000 20.027 20.027 slow.py:5(main)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'objects}
1 0.000 0.000 0.000 0.000 {print}
1 0.000 0.000 0.000 0.000 {range}
10 20.027 2.003 20.027 2.003 {time.sleep}

cProfile sort by options

ncalls Total the number of calls of a function

tottime for the total time spent in the given function

cumtime is the cumulative time spent in this and all sub functions.

filename:lineno(function) provides the respective data of each function

cProfile result sorted by tottime

python -m cProfile -s tottime slow.py
25 function calls in 20.015 seconds

Ordered by: **internal time**

ncalls **tottime** percall cumtime percall filename:lineno(function)
10 **20.015** 2.001 20.015 2.001 {built-in method time.sleep}
1 **0.000** 0.000 0.000 0.000 {built-in method builtins.print}
1 **0.000** 0.000 20.015 20.015 slow.py:6(main)
10 **0.000** 0.000 20.015 2.001 slow.py:13(expensive)
1 **0.000** 0.000 20.015 20.015 slow.py:3(<module>)
1 **0.000** 0.000 20.015 20.015 {built-in method builtins.exec}
1 **0.000** 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

cProfile result sorted by ncalls

python -m cProfile -s ncalls slow.py
25 function calls in 20.015 seconds

Ordered by: **call count**

**ncalls** tottime percall cumtime percall filename:lineno(function)
**10** 20.020 2.002 20.020 2.002 {built-in method time.sleep}
**10** 0.000 0.000 20.020 2.002 slow.py:13(expensive)
**1** 0.000 0.000 20.020 20.020 {built-in method builtins.exec}
**1** 0.000 0.000 0.000 0.000 {built-in method builtins.print}
**1** 0.000 0.000 20.020 20.020 slow.py:6(main)
**1** 0.000 0.000 20.020 20.020 slow.py:3(<module>)
**1** 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

Easiest way to profile Python code

def main():
    sum = 0
    for i in range(10):
    sum += expensive(i // 2)
    return sum
def expensive(t):
    time.sleep(t)
    return t
    
if __name__ == '__main__':
     pr = cProfile.Profile()
     pr.enable()
     main()
     pr.disable()
     pr.print_stats()
25 function calls in 20.030 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
10 0.000 0.000 20.027 2.003 slow.py:11(expensive)
1 0.002 0.002 20.030 20.030 slow.py:2(<module>)
1 0.000 0.000 20.027 20.027 slow.py:5(main)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'objects}
1 0.000 0.000 0.000 0.000 {print}
1 0.000 0.000 0.000 0.000 {range}
10 20.027 2.003 20.027 2.003 {time.sleep}

We can also save the output!

if __name__ == '__main__':
pr = cProfile.Profile()
pr.enable()
main()
pr.disable()
**pr.dump_stats("profile.output")**

How do we use the profiling information?

pstats Module

  • You can use pstats to format the output in various ways.
  • pstats provides sorting options. ( calls, time, cumulative )
import pstats

p = pstats.Stats("profile.output")
p.strip_dirs().sort_stats("calls").print_stats()
23 function calls in 20.019 seconds

Ordered by: call count

ncalls tottime percall cumtime percall filename:lineno(function)
10 20.019 2.002 20.019 2.002 {built-in method time.sleep}
10 0.000 0.000 20.019 2.002 slow.py:14(expensive)
1 0.000 0.000 0.000 0.000 {built-in method builtins.print}
1 0.000 0.000 20.019 20.019 slow.py:7(main)

An easy way to visualize cProfile results

SNAKEVIZ library

pip install snakeviz
$ snakeviz profile.output
  • Snakeviz provides two ways to explore profiler data
  • Summaries Times
  • You can choose the sorting criterion in the output table

Python performance profiling

PyCallGraph library

pip install pycallgraph
$ pycallgraph graphviz -- python slow.py
  • Visual extension of cProfile.
  • Understand code structure and Flow
  • Summaries Times
  • Darker color represent more time spent.

Python performance profiling

Other profiling options

Line profiler

Memory profiler

Live Example

Python performance profiling

https://github.com/akkefa/pycon-python-performance-profiling/profiling-demo.ipynb

Thank you.

Linkedin.com/in/akkefa
Contact : [email protected]

About

Examples of using common Python profiling techniques

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published