-
Notifications
You must be signed in to change notification settings - Fork 63
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
100 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
#!/usr/bin/env python3 | ||
|
||
from trojanvision.models.imagemodel import _ImageModel, ImageModel | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torchvision.models | ||
from torchvision.models.swin_transformer import (Swin_T_Weights, Swin_S_Weights, Swin_B_Weights, | ||
Swin_V2_T_Weights, Swin_V2_S_Weights, Swin_V2_B_Weights) | ||
from collections import OrderedDict | ||
|
||
from torchvision.models.swin_transformer import _swin_transformer, SwinTransformerBlockV2, PatchMergingV2 | ||
from typing import Optional, Any | ||
|
||
|
||
class _SwinTransformer(_ImageModel): | ||
|
||
def __init__(self, name: str = 'swin_v2_t', **kwargs): | ||
super().__init__(**kwargs) | ||
if 'comp' in name: | ||
ModelClass = eval(name) | ||
else: | ||
ModelClass = getattr(torchvision.models, name) | ||
_model: torchvision.models.SwinTransformer = ModelClass(num_classes=self.num_classes) | ||
|
||
self.features = _model.features | ||
self.features.add_module('norm', _model.norm) | ||
self.features.add_module('permute', _model.permute) | ||
self.classifier = nn.Sequential(OrderedDict([ | ||
('fc', _model.head), | ||
])) | ||
|
||
|
||
class SwinTransformer(ImageModel): | ||
available_models = {'swin_t', 'swin_s', 'swin_b', | ||
'swin_v2_t', 'swin_v2_s', 'swin_v2_b', | ||
'swin_t_comp', 'swin_v2_t_comp', | ||
} | ||
weights = { | ||
'swin_t': Swin_T_Weights, | ||
'swin_s': Swin_S_Weights, | ||
'swin_b': Swin_B_Weights, | ||
'swin_v2_t': Swin_V2_T_Weights, | ||
'swin_v2_s': Swin_V2_S_Weights, | ||
'swin_v2_b': Swin_V2_B_Weights, | ||
} | ||
|
||
def __init__(self, name: str = 'swin_v2_t', | ||
model: type[_SwinTransformer] = _SwinTransformer, **kwargs): | ||
super().__init__(name=name, model=model, **kwargs) | ||
|
||
def get_official_weights(self, **kwargs) -> OrderedDict[str, torch.Tensor]: | ||
_dict = super().get_official_weights(**kwargs) | ||
_dict['features.norm.weight'] = _dict['norm.weight'] | ||
_dict['features.norm.bias'] = _dict['norm.bias'] | ||
del _dict['norm.weight'] | ||
del _dict['norm.bias'] | ||
_dict['classifier.fc.weight'] = _dict['head.weight'] | ||
_dict['classifier.fc.bias'] = _dict['head.bias'] | ||
del _dict['head.weight'] | ||
del _dict['head.bias'] | ||
return _dict | ||
|
||
|
||
def swin_t_comp(*, weights: Optional[Swin_T_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer: | ||
weights = Swin_T_Weights.verify(weights) | ||
|
||
return _swin_transformer( | ||
patch_size=[2, 2], | ||
embed_dim=96, | ||
depths=[2, 2, 2, 2], | ||
num_heads=[3, 6, 12, 24], | ||
window_size=[4, 4], | ||
stochastic_depth_prob=0.2, | ||
weights=weights, | ||
progress=progress, | ||
**kwargs, | ||
) | ||
|
||
|
||
def swin_v2_t_comp(*, weights: Optional[Swin_V2_T_Weights] = None, progress: bool = True, **kwargs: Any) -> SwinTransformer: | ||
weights = Swin_V2_T_Weights.verify(weights) | ||
|
||
return _swin_transformer( | ||
patch_size=[2, 2], | ||
embed_dim=96, | ||
depths=[2, 2], | ||
num_heads=[3, 6, 12, 24], | ||
window_size=[4, 4], | ||
stochastic_depth_prob=0.2, | ||
weights=weights, | ||
progress=progress, | ||
block=SwinTransformerBlockV2, | ||
downsample_layer=PatchMergingV2, | ||
**kwargs, | ||
) |