-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4c4f60a
commit 5447765
Showing
3 changed files
with
277 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
272 changes: 272 additions & 0 deletions
272
examples/macaque_reaching/workflow_and_comparison_of_MARBLE_and_CEBRA.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a700a730-16ad-4571-8507-5afe7f029d7b", | ||
"metadata": {}, | ||
"source": [ | ||
"# Example workflow and comparison between MARBLE with CEBRA" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "33158156-a63b-4dc7-8ab1-ef0b0986bf88", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"%load_ext autoreload\n", | ||
"%autoreload 2\n", | ||
"\n", | ||
"! pip install ipympl\n", | ||
"%matplotlib widget\n", | ||
"\n", | ||
"import numpy as np\n", | ||
"import pickle\n", | ||
"from macaque_reaching_helpers import fit_pca, format_data\n", | ||
"import matplotlib as mpl\n", | ||
"\n", | ||
"import MARBLE\n", | ||
"\n", | ||
"!pip install cebra\n", | ||
"from cebra import CEBRA" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "67c8f05c-c18d-4be4-b71d-4a7de237e68b", | ||
"metadata": {}, | ||
"source": [ | ||
"## Load data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "119f22a5-f780-48ed-ae05-0937fed60ddc", | ||
"metadata": {}, | ||
"source": [ | ||
"This part is data specific and you will need to adapt it to your own dataset." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "03b7a91c-617e-4070-8525-abd7aabcadec", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!wget -nc https://dataverse.harvard.edu/api/access/datafile/6969883 -O data/rate_data_20ms_100ms.pkl\n", | ||
"\n", | ||
"with open('data/rate_data_20ms_100ms.pkl', 'rb') as handle:\n", | ||
" rates = pickle.load(handle)\n", | ||
"\n", | ||
"!wget -nc https://dataverse.harvard.edu/api/access/datafile/6963200 -O data/trial_ids.pkl\n", | ||
"\n", | ||
"with open('data/trial_ids.pkl', 'rb') as handle:\n", | ||
" trial_ids = pickle.load(handle)\n", | ||
"\n", | ||
"conditions = [\"DownLeft\", \"Left\", \"UpLeft\", \"Up\", \"UpRight\", \"Right\", \"DownRight\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "135c737c-7ba5-47d2-9d20-90d4a7b8f50a", | ||
"metadata": {}, | ||
"source": [ | ||
"## Linear dimensionality reduction and filtering of data. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "2b9b0b28-eb95-4f34-9afb-5d08a9ba88fe", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"pca_n = 5\n", | ||
"filter_data = True\n", | ||
"day = 5 #load one session\n", | ||
"\n", | ||
"pca = fit_pca(rates, day, conditions, filter_data=filter_data, pca_n=pca_n)\n", | ||
" \n", | ||
"pos, vel, timepoints, condition_labels, trial_indexes = format_data(rates, \n", | ||
" trial_ids,\n", | ||
" day, \n", | ||
" conditions, \n", | ||
" pca=pca,\n", | ||
" filter_data=filter_data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "b0dcca1b-c74a-4726-a70e-2a63f85d6db4", | ||
"metadata": {}, | ||
"source": [ | ||
"## Run CEBRA" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "de9b27b6-81a6-4d01-8c29-1f15122fb823", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"cebra_model = CEBRA(model_architecture='offset10-model',\n", | ||
" batch_size=512,\n", | ||
" learning_rate=0.0001,\n", | ||
" temperature=1,\n", | ||
" output_dimension=3,\n", | ||
" max_iterations=5000,\n", | ||
" distance='euclidean',\n", | ||
" conditional='time_delta',\n", | ||
" device='cpu',\n", | ||
" verbose=True,\n", | ||
" time_offsets=10)\n", | ||
"\n", | ||
"pos_all = np.vstack(pos)\n", | ||
"condition_labels = np.hstack(condition_labels)\n", | ||
" \n", | ||
"cebra_model.fit(pos_all, condition_labels)\n", | ||
"cebra_pos = cebra_model.transform(pos_all)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "c2eae737-f1b4-41ba-9c56-4e5f0cf7743f", | ||
"metadata": {}, | ||
"source": [ | ||
"## Run MARBLE" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "b16f9b30-916f-4a3a-800e-2b4a46135aaf", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data = MARBLE.construct_dataset(\n", | ||
" anchor=pos,\n", | ||
" vector=vel,\n", | ||
" k=30,\n", | ||
" spacing=0.0,\n", | ||
" delta=1.5,\n", | ||
")\n", | ||
"\n", | ||
"params = {\n", | ||
" \"epochs\": 120, # optimisation epochs\n", | ||
" \"order\": 2, # order of derivatives\n", | ||
" \"hidden_channels\": 100, # number of internal dimensions in MLP\n", | ||
" \"out_channels\": 3, \n", | ||
" \"inner_product_features\": False,\n", | ||
" \"diffusion\": True,\n", | ||
"}\n", | ||
"\n", | ||
"model = MARBLE.net(data, params=params)\n", | ||
"\n", | ||
"model.fit(data, outdir=\"data/session_{}_20ms\".format(day))\n", | ||
"data = model.transform(data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "1b9cd38a-643f-48dc-af76-f26539d40f4f", | ||
"metadata": {}, | ||
"source": [ | ||
"## Plot embeddings" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "72e2fc60-c21a-4c6f-819d-e85d31761832", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"label = np.hstack(condition_labels)\n", | ||
"\n", | ||
"colors = mpl.cm.viridis(np.linspace(0, 1, 7))\n", | ||
"fig = plt.figure(figsize=(10, 8))\n", | ||
"\n", | ||
"\n", | ||
"ax1 = fig.add_subplot(121, projection='3d')\n", | ||
"\n", | ||
"emb = cebra_pos\n", | ||
"\n", | ||
"for i in range(7):\n", | ||
" # Filter points by condition label\n", | ||
" indices = label == i\n", | ||
" ax1.scatter(\n", | ||
" emb[indices, 0], # x-coordinates\n", | ||
" emb[indices, 1], # y-coordinates\n", | ||
" emb[indices, 2], # z-coordinates\n", | ||
" s=10, # marker size\n", | ||
" color=colors[i], # color for each condition\n", | ||
" label=f'Condition {i}',\n", | ||
" alpha=0.8\n", | ||
" )\n", | ||
"\n", | ||
"ax1.grid(False)\n", | ||
"ax1.set_xticks([])\n", | ||
"ax1.set_yticks([])\n", | ||
"ax1.set_zticks([])\n", | ||
"ax1.legend()\n", | ||
"\n", | ||
"ax2 = fig.add_subplot(121, projection='3d')\n", | ||
"\n", | ||
"emb = data.emb\n", | ||
"\n", | ||
"for i in range(7):\n", | ||
" # Filter points by condition label\n", | ||
" indices = label == i\n", | ||
" ax2.scatter(\n", | ||
" emb[indices, 0], # x-coordinates\n", | ||
" emb[indices, 1], # y-coordinates\n", | ||
" emb[indices, 2], # z-coordinates\n", | ||
" s=10, # marker size\n", | ||
" color=colors[i], # color for each condition\n", | ||
" label=f'Condition {i}',\n", | ||
" alpha=0.8\n", | ||
" )\n", | ||
"\n", | ||
"ax2.grid(False)\n", | ||
"ax2.set_xticks([])\n", | ||
"ax2.set_yticks([])\n", | ||
"ax2.set_zticks([])\n", | ||
"ax2.legend()\n", | ||
"\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "8eb30c9f-918d-4d27-a012-fbbb63cfd075", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.7" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |