Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Filling Cubes in a Few Lines of Code #1053

Merged
merged 7 commits into from
Sep 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Cubical/Foundations/Everything.agda
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ open import Cubical.Foundations.Equiv.BiInvertible public
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.Equiv.Dependent
open import Cubical.Foundations.HLevels public
open import Cubical.Foundations.HLevels.Extend
open import Cubical.Foundations.Path public
open import Cubical.Foundations.Pointed public
open import Cubical.Foundations.RelationalStructure public
Expand Down
119 changes: 119 additions & 0 deletions Cubical/Foundations/HLevels/Extend.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
{-

Kan Operations for n-Truncated Types

It provides an efficient way to construct cubes in truncated types.

A draft note on this can be found online at
https://kangrongji.github.io/files/extend-operations.pdf

-}
{-# OPTIONS --safe #-}
module Cubical.Foundations.HLevels.Extend where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels

private
variable
ℓ : Level


-- For conveniently representing the boundary of cubes
∂ : I → I
∂ i = i ∨ ~ i


-- TODO: Write a macro to generate these stuff.

module _
{X : Type ℓ}
(h : isContr X)
{ϕ : I} where

extend₀ :
(x : Partial _ X)
→ X [ ϕ ↦ x ]
extend₀ = extend h _


module _
{X : I → Type ℓ}
(h : (i : I) → isProp (X i))
{ϕ : I} where

extend₁ :
(x : (i : I) → Partial _ (X i))
(i : I) → X i [ ϕ ∨ ∂ i ↦ x i ]
extend₁ x i = inS (hcomp (λ j → λ
{ (ϕ = i1) → h i (bottom i) (x i 1=1) j
; (i = i0) → h i (bottom i) (x i 1=1) j
; (i = i1) → h i (bottom i) (x i 1=1) j })
(bottom i))
where
bottom : (i : I) → X i
bottom i = isProp→PathP h (x i0 1=1) (x i1 1=1) i


module _
{X : I → I → Type}
(h : (i j : I) → isSet (X i j))
{ϕ : I} where

extend₂ :
(x : (i j : I) → Partial _ (X i j))
(i j : I) → X i j [ ϕ ∨ ∂ i ∨ ∂ j ↦ x i j ]
extend₂ x i j = inS (outS (extend₁PathP p i) j)
where
isOfHLevel₁PathP : (i : I) (a : X i i0) (b : X i i1)
→ isProp (PathP (λ j → X i j) a b)
isOfHLevel₁PathP i = isOfHLevelPathP' 1 (h i i1)

extend₁PathP :
(p : (i : I) → Partial _ (PathP _ (x i i0 1=1) (x i i1 1=1)))
(i : I) → PathP _ (x i i0 1=1) (x i i1 1=1) [ ϕ ∨ ∂ i ↦ p i ]
extend₁PathP = extend₁ (λ i → isOfHLevel₁PathP i (x i i0 1=1) (x i i1 1=1)) {ϕ}

p : (i : I) → Partial _ (PathP _ (x i i0 1=1) (x i i1 1=1))
p i (i = i0) = λ j → x i j 1=1
p i (i = i1) = λ j → x i j 1=1
p i (ϕ = i1) = λ j → x i j 1=1


module _
(X : I → I → I → Type)
(h : (i j k : I) → isGroupoid (X i j k))
{ϕ : I} where

extend₃ :
(x : (i j k : I) → Partial _ (X i j k))
(i j k : I) → X i j k [ ϕ ∨ ∂ i ∨ ∂ j ∨ ∂ k ↦ x i j k ]
extend₃ x i j k = inS (outS (extend₂PathP p i j) k)
where
isOfHLevel₂PathP : (i j : I) (a : X i j i0) (b : X i j i1)
→ isSet (PathP (λ k → X i j k) a b)
isOfHLevel₂PathP i j = isOfHLevelPathP' 2 (h i j i1)

extend₂PathP :
(p : (i j : I) → Partial _ (PathP _ (x i j i0 1=1) (x i j i1 1=1)))
(i j : I) → PathP _ (x i j i0 1=1) (x i j i1 1=1) [ ϕ ∨ ∂ i ∨ ∂ j ↦ p i j ]
extend₂PathP = extend₂ (λ i j → isOfHLevel₂PathP i j (x i j i0 1=1) (x i j i1 1=1)) {ϕ}

p : (i j : I) → Partial _ (PathP (λ k → X i j k) (x i j i0 1=1) (x i j i1 1=1))
p i j (i = i0) = λ k → x i j k 1=1
p i j (i = i1) = λ k → x i j k 1=1
p i j (j = i0) = λ k → x i j k 1=1
p i j (j = i1) = λ k → x i j k 1=1
p i j (ϕ = i1) = λ k → x i j k 1=1


private
-- An example showing how to directly fill 3-cubes in an h-proposition.
-- It can help when one wants to pattern match certain HITs towards some n-types.

isProp→Cube :
{X : Type ℓ} (h : isProp X)
(x : (i j k : I) → Partial _ X)
(i j k : I) → X [ ∂ i ∨ ∂ j ∨ ∂ k ↦ x i j k ]
isProp→Cube h x i j =
extend₁ (λ _ → h) {∂ i ∨ ∂ j} (x i j)