-
Notifications
You must be signed in to change notification settings - Fork 3
/
BitEpiVis.R
186 lines (154 loc) · 6.17 KB
/
BitEpiVis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
library(dplyr)
library(RCy3)
library(igraph)
setwd('~/temp/cc/BitEpi')
Color=list(SNP='red',PAIR='blue',TRIPLET='orange',QUADLET='green', OTHER='gray')
# Nodes of the graph are SNPs and Interactions
# Each SNP node could be connected to multiple Interaction Node
# Each Interaction Node is conneced to the SNPs that are involved in that interaction.
# This function name the interaction nodes by concatinating SNPS with # seprator.
# the 2-SNP, 3-SNP, and 4-SNP names are added as 3 new column to the best dataframe
# For Example if rs123, rs456 and rs789 Interact with each other then
# the Interaction node is called rs123#rs456#rs789
AddInteractionNode = function(data)
{
x = as.data.frame(t(apply(select(data, SNP, PAIR), 1, sort)))
data$nP = paste(x$V1, x$V2, sep = "#")
x = as.data.frame(t(apply(select(data, SNP, TRIPLET_1, TRIPLET_2), 1, sort)))
data$nT = paste(x$V1, x$V2, x$V3, sep = "#")
x = as.data.frame(t(apply(select(data, SNP, QUADLET_1, QUADLET_2, QUADLET_3), 1, sort)))
data$nQ = paste(x$V1, x$V2, x$V3, x$V4, sep = "#")
return(data)
}
# list all the nodes (1-SNP, 2-SNP, 3-SNP, 4SNP) assing beta to the size and rank them by order
NodeGen = function(dataX)
{
#1-SNP
data = dataX
data$Node = data$SNP
data$order = 1
data$beta = data$SNP_B
data$color = Color$SNP
data = data[order(-data$SNP_A),]
data$rank = seq.int(nrow(data))
nodes = select(data, Node, rank, beta, color, order)
#2-SNP
data = dataX
data$Node = data$nP
data$order = 2
data$beta = data$PAIR_B
data$color = Color$PAIR
data = data[order(data[,'Node'],-data[,'beta']),]
data = data[!duplicated(data$Node),]
data = data[order(-data$PAIR_A),]
data$rank = seq.int(nrow(data))
nodes = rbind(nodes, select(data, Node, rank, beta, color, order))
#3-SNP
data = dataX
data$Node = data$nT
data$order = 3
data$beta = data$TRIPLET_B
data$color = Color$TRIPLET
data = data[order(data[,'Node'],-data[,'beta']),]
data = data[!duplicated(data$Node),]
data = data[order(-data$TRIPLET_A),]
data$rank = seq.int(nrow(data))
nodes = rbind(nodes, select(data, Node, rank, beta, color, order))
#4-SNP
data = dataX
data$Node = data$nQ
data$order = 4
data$beta = data$QUADLET_B
data$color = Color$QUADLET
data = data[order(data[,'Node'],-data[,'beta']),]
data = data[!duplicated(data$Node),]
data = data[order(-data$QUADLET_A),]
data$rank = seq.int(nrow(data))
nodes = rbind(nodes, select(data, Node, rank, beta, color, order))
return(nodes)
}
# list all edges between interactive nodes (2-SNP, 3-SNP and 4-SNP) and SNP nodes (1-SNP)
EdgeGen = function(data)
{
edf = data.frame(source=character(), target=character())
for(i in 1:nrow(data)) {
edf = rbind(edf, data.frame(source=data[i,"nP"], target=data[i,"SNP"]))
edf = rbind(edf, data.frame(source=data[i,"nP"], target=data[i,"PAIR"]))
edf = rbind(edf, data.frame(source=data[i,"nT"], target=data[i,"SNP"]))
edf = rbind(edf, data.frame(source=data[i,"nT"], target=data[i,"TRIPLET_1"]))
edf = rbind(edf, data.frame(source=data[i,"nT"], target=data[i,"TRIPLET_2"]))
edf = rbind(edf, data.frame(source=data[i,"nQ"], target=data[i,"SNP"]))
edf = rbind(edf, data.frame(source=data[i,"nQ"], target=data[i,"QUADLET_1"]))
edf = rbind(edf, data.frame(source=data[i,"nQ"], target=data[i,"QUADLET_2"]))
edf = rbind(edf, data.frame(source=data[i,"nQ"], target=data[i,"QUADLET_3"]))
}
return(edf)
}
# convert BitEpi Best file to nodes and edges
BestToNodesAndEdges = function(bestFn)
{
# Read BitEpi "best" file into a data frame
bestDf = read.csv(bestFn)
bestDf = AddInteractionNode(bestDf)
Nodes = NodeGen(bestDf)
Edges = EdgeGen(bestDf)
return(list(Nodes=Nodes, Edges=Edges))
}
# query nodes and related edges
QueryGraph = function(Graph, thr, minNodeSize, maxNodeSize)
{
if(minNodeSize >= maxNodeSize)
{
print("minNodeSize is greater or equal maxNodeSize")
return(NULL,NULL)
}
allNodes = Graph$Nodes
allEdges = Graph$Edges
# select nodes to be in the graph
s1 = allNodes %>% filter(order==1 & allNodes$rank<=thr$SNP)
s2 = allNodes %>% filter(order==2 & allNodes$rank<=thr$PAIR)
s3 = allNodes %>% filter(order==3 & allNodes$rank<=thr$TRIPLET)
s4 = allNodes %>% filter(order==4 & allNodes$rank<=thr$QUADLET)
selNodes = unique(rbind(s1,s2,s3,s4))
# select interaction nodes
intNodes = selNodes %>% filter(order>1)
# select all edges for intraction nodes
intEdges = select(merge(x=allEdges, y=intNodes, by.x='source', by.y='Node'), source, target)
intEdges = unique(intEdges)
# select all target names for interaction nodes
tarNames = unique(select(intEdges, target))
names(tarNames) = 'Node'
#grab target nodes from all nodes
tarNodes = merge(x=allNodes, y=tarNames, by='Node')
#and merge them to dataset
selNodes = unique(rbind(selNodes, tarNodes))
minBeta = min(selNodes$beta)
maxBeta = max(selNodes$beta)
rangeBeta = maxBeta - minBeta
rangeSize = maxNodeSize - minNodeSize
ratio = rangeSize/rangeBeta
selNodes$size = ((selNodes$beta - minBeta) * ratio) + minNodeSize;
selNodes[(selNodes$order==1) & (selNodes$rank>thr$SNP),]$color = Color$OTHER
selNodes[(selNodes$order==1) & (selNodes$rank>thr$SNP),]$size = minNodeSize
return(list(Nodes=selNodes, Edges=intEdges))
}
DoItAll = function(bestFn, thr, minNodeSize, maxNodeSize)
{
# read best file into a graph
GraphAll = BestToNodesAndEdges(bestFn)
# query graph
GraphSelected = QueryGraph(GraphAll, thr, minNodeSize, maxNodeSize)
Edges = GraphSelected$Edges
Nodes = GraphSelected$Nodes
#plot graph
Nodes$label = " "
network = graph_from_data_frame(d=Edges, directed=FALSE, vertices = Nodes)
plot(network, vertex.size=V(network)$size, vertex.label=V(network)$Node, vertex.color=V(network)$color, vertex.label=V(network)$label)
cytoscapePing()
createNetworkFromIgraph(network,"BitEpi Network", title = "BitEpi Graph")
}
thr=list(SNP=3,PAIR=3,TRIPLET=3,QUADLET=3)
minNodeSize = 10
maxNodeSize = 35
#Sort by Alpha and but represent beta as node size in the plot
DoItAll('sampleData/out.best.csv', thr, minNodeSize, maxNodeSize)