A fun side program to perform machine learning algorithm using plain java code.
The Naive Bayes code is dynamic for different datasets as long as all columns in the dataset are used and the last column is the result.
Note: For datasets not involving the first or first few columns such as the 3rd dataset example, change the iterations as commented in the code.
- Developed using plain Java
- Naive Bayes (using dynamic datasets)
- Linear Regression (using static dataset)
- K-Medoids Clustering (using static dataset)
- Adnan Hakim github.com/adnanhakim
- Change the dataset as required
outlook | temperature | humidity | windy | class |
---|---|---|---|---|
sunny | hot | high | false | N |
sunny | hot | high | true | N |
overcast | hot | high | false | P |
rain | mild | high | false | P |
rain | cool | normal | false | P |
rain | cool | normal | true | N |
overcast | cool | normal | true | P |
sunny | mild | high | false | N |
sunny | cool | normal | false | P |
rain | mild | normal | false | P |
sunny | mild | normal | true | P |
overcast | mild | high | true | P |
overcast | hot | normal | false | P |
rain | mild | high | true | N |
color | type | origin | stolen |
---|---|---|---|
red | sports | domestic | yes |
red | sports | domestic | no |
red | sports | domestic | yes |
yellow | sports | domestic | no |
yellow | sports | imported | yes |
yellow | suv | imported | no |
yellow | suv | imported | yes |
yellow | suv | domestic | no |
red | suv | imported | no |
red | sports | imported | yes |
name | hair | height | weight | dublin | result |
---|---|---|---|---|---|
Sarah | blonde | average | light | no | sunburned |
Dana | blonde | tall | average | yes | none |
Alex | brown | short | average | yes | none |
Annie | blonde | short | average | no | sunburned |
Emily | red | average | heavy | no | sunburned |
Pete | brown | tall | heavy | no | none |
John | brown | average | heavy | no | none |
Katie | brown | short | light | yes | none |
age | income | student | credit_rating | buys_computer |
---|---|---|---|---|
<=30 | high | no | fair | no |
<=30 | high | no | excellent | no |
31...40 | high | no | fair | yes |
>40 | medium | no | fair | yes |
>40 | low | yes | fair | yes |
>40 | low | yes | excellent | no |
31...40 | low | yes | excellent | yes |
<=30 | medium | no | fair | no |
<=30 | low | yes | fair | yes |
>40 | medium | yes | fair | yes |
<=30 | medium | yes | excellent | yes |
31...40 | medium | no | excellent | yes |
31...40 | high | yes | fair | yes |
>40 | medium | no | excellent | no |
Copyright (c) 2020 Adnan Hakim
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.