Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: fix all notebooks to run with latest develop #169

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
202 changes: 108 additions & 94 deletions examples/aurora.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -49,10 +49,28 @@
"try:\n",
" import brax\n",
"except:\n",
" !pip install git+https://github.com/google/brax.git@v0.0.15 |tail -n 1\n",
" !pip install git+https://github.com/google/brax.git@v0.9.2 |tail -n 1\n",
" import brax\n",
"\n",
"try:\n",
" import flax\n",
"except:\n",
" !pip install --no-deps git+https://github.com/google/[email protected] |tail -n 1\n",
" import flax\n",
"\n",
"try:\n",
" import chex\n",
"except:\n",
" !pip install --no-deps git+https://github.com/deepmind/[email protected] |tail -n 1\n",
" import chex\n",
"\n",
"try:\n",
" import jumanji\n",
"except:\n",
" !pip install \"jumanji==0.3.1\"\n",
" import jumanji\n",
"\n",
"try:\n",
" import qdax\n",
"except:\n",
" !pip install --no-deps git+https://github.com/adaptive-intelligent-robotics/QDax@main |tail -n 1\n",
Expand All @@ -62,13 +80,20 @@
"from qdax.core.aurora import AURORA\n",
"from qdax.core.containers.unstructured_repertoire import UnstructuredRepertoire\n",
"from qdax import environments\n",
"from qdax.tasks.brax_envs import scoring_aurora_function\n",
"from qdax.environments.bd_extractors import get_aurora_bd\n",
"from qdax.tasks.brax_envs import (\n",
" create_default_brax_task_components,\n",
" get_aurora_scoring_fn,\n",
")\n",
"from qdax.environments.bd_extractors import (\n",
" AuroraExtraInfoNormalization,\n",
" get_aurora_encoding,\n",
")\n",
"from qdax.core.neuroevolution.buffers.buffer import QDTransition\n",
"from qdax.core.neuroevolution.networks.networks import MLP\n",
"from qdax.core.emitters.mutation_operators import isoline_variation\n",
"from qdax.core.emitters.standard_emitters import MixingEmitter\n",
"\n",
"from qdax.types import Observation\n",
"from qdax.utils import train_seq2seq\n",
"\n",
"\n",
Expand Down Expand Up @@ -184,7 +209,7 @@
" \"\"\"\n",
"\n",
" actions = policy_network.apply(policy_params, env_state.obs)\n",
" \n",
"\n",
" state_desc = env_state.info[\"state_descriptor\"]\n",
" next_state = env.step(env_state, actions)\n",
"\n",
Expand All @@ -208,7 +233,7 @@
"source": [
"## Define the scoring function and the way metrics are computed\n",
"\n",
"The scoring function is used in the evaluation step to determine the fitness and behavior descriptor of each individual. "
"The scoring function is used in the evaluation step to determine the fitness and behavior descriptor of each individual."
]
},
{
Expand All @@ -218,19 +243,35 @@
"outputs": [],
"source": [
"# Prepare the scoring function\n",
"bd_extraction_fn = functools.partial(\n",
" get_aurora_bd,\n",
" option=observation_option,\n",
" hidden_size=hidden_size,\n",
" traj_sampling_freq=traj_sampling_freq,\n",
" max_observation_size=max_observation_size,\n",
"env, policy_network, scoring_fn, random_key = create_default_brax_task_components(\n",
" env_name=env_name,\n",
" random_key=random_key,\n",
")\n",
"scoring_fn = functools.partial(\n",
" scoring_aurora_function,\n",
" init_states=init_states,\n",
" episode_length=episode_length,\n",
" play_step_fn=play_step_fn,\n",
" behavior_descriptor_extractor=bd_extraction_fn,\n",
"\n",
"def observation_extractor_fn(\n",
" data: QDTransition,\n",
") -> Observation:\n",
" \"\"\"Extract observation from the state.\"\"\"\n",
" state_obs = data.obs[:, ::traj_sampling_freq, :max_observation_size]\n",
"\n",
" # add the x/y position - (batch_size, traj_length, 2)\n",
" state_desc = data.state_desc[:, ::traj_sampling_freq]\n",
"\n",
" if observation_option == \"full\":\n",
" observations = jnp.concatenate([state_desc, state_obs], axis=-1)\n",
" elif observation_option == \"no_sd\":\n",
" observations = state_obs\n",
" elif observation_option == \"only_sd\":\n",
" observations = state_desc\n",
" else:\n",
" raise ValueError(\"Unknown observation option.\")\n",
"\n",
" return observations\n",
"\n",
"# Prepare the scoring function\n",
"aurora_scoring_fn = get_aurora_scoring_fn(\n",
" scoring_fn=scoring_fn,\n",
" observation_extractor_fn=observation_extractor_fn,\n",
")\n",
"\n",
"# Get minimum reward value to make sure qd_score are positive\n",
Expand Down Expand Up @@ -290,13 +331,6 @@
"metadata": {},
"outputs": [],
"source": [
"# Instantiate AURORA\n",
"aurora = AURORA(\n",
" scoring_function=scoring_fn,\n",
" emitter=mixing_emitter,\n",
" metrics_function=metrics_fn,\n",
")\n",
"\n",
"aurora_dims = hidden_size\n",
"centroids = jnp.zeros(shape=(num_centroids, aurora_dims))\n",
"\n",
Expand All @@ -306,23 +340,19 @@
" (\n",
" repertoire,\n",
" random_key,\n",
" model_params,\n",
" mean_observations,\n",
" std_observations,\n",
" aurora_extra_info\n",
" ) = carry\n",
"\n",
" # update\n",
" (repertoire, _, metrics, random_key,) = aurora.update(\n",
" repertoire,\n",
" None,\n",
" random_key,\n",
" model_params,\n",
" mean_observations,\n",
" std_observations,\n",
" aurora_extra_info=aurora_extra_info,\n",
" )\n",
"\n",
" return (\n",
" (repertoire, random_key, model_params, mean_observations, std_observations),\n",
" (repertoire, random_key, aurora_extra_info),\n",
" metrics,\n",
" )\n",
"\n",
Expand All @@ -344,38 +374,67 @@
"else:\n",
" ValueError(\"The chosen option is not correct.\")\n",
"\n",
"# define the seq2seq model\n",
"# Define the seq2seq model\n",
"model = train_seq2seq.get_model(\n",
" observations_dims[-1], True, hidden_size=hidden_size\n",
")\n",
"\n",
"# init the model params\n",
"# Init the model params\n",
"random_key, subkey = jax.random.split(random_key)\n",
"model_params = train_seq2seq.get_initial_params(\n",
" model, subkey, (1, *observations_dims)\n",
")\n",
"\n",
"print(jax.tree_map(lambda x: x.shape, model_params))\n",
"\n",
"# Define the encoder function\n",
"encoder_fn = jax.jit(\n",
" functools.partial(\n",
" get_aurora_encoding,\n",
" model=model,\n",
" )\n",
")\n",
"\n",
"# Define the training function\n",
"train_fn = functools.partial(\n",
" train_seq2seq.lstm_ae_train,\n",
" model=model,\n",
" batch_size=lstm_batch_size,\n",
")\n",
"\n",
"# Instantiate AURORA\n",
"aurora = AURORA(\n",
" scoring_function=aurora_scoring_fn,\n",
" emitter=mixing_emitter,\n",
" metrics_function=metrics_fn,\n",
" encoder_function=encoder_fn,\n",
" training_function=train_fn,\n",
")\n",
"\n",
"# define arbitrary observation's mean/std\n",
"mean_observations = jnp.zeros(observations_dims[-1])\n",
"std_observations = jnp.ones(observations_dims[-1])\n",
"\n",
"# init step of the aurora algorithm\n",
"repertoire, _, random_key = aurora.init(\n",
" init_variables,\n",
" centroids,\n",
" random_key,\n",
"# init all the information needed by AURORA to compute encodings\n",
"aurora_extra_info = AuroraExtraInfoNormalization.create(\n",
" model_params,\n",
" mean_observations,\n",
" std_observations,\n",
" l_value_init,\n",
")\n",
"\n",
"# init step of the aurora algorithm\n",
"repertoire, emitter_state, aurora_extra_info, random_key = aurora.init(\n",
" init_variables,\n",
" aurora_extra_info,\n",
" jnp.asarray(l_value_init),\n",
" max_observation_size,\n",
" random_key,\n",
")\n",
"\n",
"# initializing means and stds and AURORA\n",
"random_key, subkey = jax.random.split(random_key)\n",
"model_params, mean_observations, std_observations = train_seq2seq.lstm_ae_train(\n",
" subkey, repertoire, model_params, 0, hidden_size=hidden_size, batch_size=lstm_batch_size\n",
"repertoire, aurora_extra_info = aurora.train(\n",
" repertoire, model_params, iteration=0, random_key=subkey\n",
")\n",
"\n",
"# design aurora's schedule\n",
Expand Down Expand Up @@ -409,11 +468,11 @@
"while iteration < max_iterations:\n",
"\n",
" (\n",
" (repertoire, random_key, model_params, mean_observations, std_observations),\n",
" (repertoire, random_key, aurora_extra_info),\n",
" metrics,\n",
" ) = jax.lax.scan(\n",
" update_scan_fn,\n",
" (repertoire, random_key, model_params, mean_observations, std_observations),\n",
" (repertoire, random_key, aurora_extra_info),\n",
" (),\n",
" length=log_freq,\n",
" )\n",
Expand All @@ -427,60 +486,15 @@
" if (iteration + 1) in schedules:\n",
" # train the autoencoder\n",
" random_key, subkey = jax.random.split(random_key)\n",
" (\n",
" model_params,\n",
" mean_observations,\n",
" std_observations,\n",
" ) = train_seq2seq.lstm_ae_train(\n",
" subkey,\n",
" repertoire,\n",
" model_params,\n",
" iteration,\n",
" hidden_size=hidden_size,\n",
" batch_size=lstm_batch_size\n",
" repertoire, aurora_extra_info = aurora.train(\n",
" repertoire, model_params, iteration, subkey\n",
" )\n",
"\n",
" # re-addition of all the new behavioural descriotpors with the new ae\n",
" normalized_observations = (\n",
" repertoire.observations - mean_observations\n",
" ) / std_observations\n",
"\n",
" new_descriptors = model.apply(\n",
" {\"params\": model_params}, normalized_observations, method=model.encode\n",
" )\n",
" repertoire = repertoire.init(\n",
" genotypes=repertoire.genotypes,\n",
" centroids=repertoire.centroids,\n",
" fitnesses=repertoire.fitnesses,\n",
" descriptors=new_descriptors,\n",
" observations=repertoire.observations,\n",
" l_value=repertoire.l_value,\n",
" )\n",
" num_indivs = jnp.sum(repertoire.fitnesses != -jnp.inf)\n",
"\n",
" elif iteration % 2 == 0:\n",
" # update the l value\n",
" num_indivs = jnp.sum(repertoire.fitnesses != -jnp.inf)\n",
"\n",
" # CVC Implementation to keep a constant number of individuals in the archive\n",
" current_error = num_indivs - n_target\n",
" change_rate = current_error - previous_error\n",
" prop_gain = 1 * 10e-6\n",
" l_value = (\n",
" repertoire.l_value\n",
" + (prop_gain * (current_error))\n",
" + (prop_gain * change_rate)\n",
" )\n",
"\n",
" previous_error = current_error\n",
"\n",
" repertoire = repertoire.init(\n",
" genotypes=repertoire.genotypes,\n",
" centroids=repertoire.centroids,\n",
" fitnesses=repertoire.fitnesses,\n",
" descriptors=repertoire.descriptors,\n",
" observations=repertoire.observations,\n",
" l_value=l_value,\n",
" repertoire, previous_error = aurora.container_size_control(\n",
" repertoire,\n",
" target_size=n_target,\n",
" previous_error=previous_error,\n",
" )\n",
"\n",
" iteration += 1"
Expand Down
42 changes: 36 additions & 6 deletions examples/cmaes.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,36 @@
"import jax\n",
"import jax.numpy as jnp\n",
"\n",
"try:\n",
" import brax\n",
"except:\n",
" !pip install git+https://github.com/google/[email protected] |tail -n 1\n",
" import brax\n",
"\n",
"try:\n",
" import flax\n",
"except:\n",
" !pip install --no-deps git+https://github.com/google/[email protected] |tail -n 1\n",
" import flax\n",
"\n",
"try:\n",
" import chex\n",
"except:\n",
" !pip install --no-deps git+https://github.com/deepmind/[email protected] |tail -n 1\n",
" import chex\n",
"\n",
"try:\n",
" import jumanji\n",
"except:\n",
" !pip install \"jumanji==0.3.1\"\n",
" import jumanji\n",
"\n",
"try:\n",
" import qdax\n",
"except:\n",
" !pip install --no-deps git+https://github.com/adaptive-intelligent-robotics/QDax@main |tail -n 1\n",
" import qdax\n",
"\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.patches import Ellipse\n",
"\n",
Expand Down Expand Up @@ -193,23 +223,23 @@
"iteration_count = 0\n",
"for _ in range(num_iterations):\n",
" iteration_count += 1\n",
" \n",
"\n",
" # sample\n",
" samples, random_key = cmaes.sample(state, random_key)\n",
" \n",
"\n",
" # udpate\n",
" state = cmaes.update(state, samples)\n",
" \n",
"\n",
" # check stop condition\n",
" stop_condition = cmaes.stop_condition(state)\n",
"\n",
" if stop_condition:\n",
" break\n",
" \n",
"\n",
" # store data for plotting\n",
" means.append(state.mean)\n",
" covs.append((state.sigma**2) * state.cov_matrix)\n",
" \n",
"\n",
"print(\"Num iterations before stop condition: \", iteration_count)"
]
},
Expand Down Expand Up @@ -281,7 +311,7 @@
" ellipse = Ellipse((mean[0], mean[1]), cov[0, 0], cov[1, 1], fill=False, color='k', ls='--')\n",
" ax.add_patch(ellipse)\n",
" ax.plot(mean[0], mean[1], color='k', marker='x')\n",
" \n",
"\n",
"ax.set_title(f\"Optimization trajectory of CMA-ES between step {traj_min} and step {traj_max}\")\n",
"plt.show()"
]
Expand Down
Loading
Loading