-
Notifications
You must be signed in to change notification settings - Fork 47
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix: fix all notebooks to run with latest develop
- Loading branch information
1 parent
b4125c3
commit 5f74f60
Showing
22 changed files
with
676 additions
and
300 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -49,10 +49,28 @@ | |
"try:\n", | ||
" import brax\n", | ||
"except:\n", | ||
" !pip install git+https://github.com/google/brax.git@v0.0.15 |tail -n 1\n", | ||
" !pip install git+https://github.com/google/brax.git@v0.9.2 |tail -n 1\n", | ||
" import brax\n", | ||
"\n", | ||
"try:\n", | ||
" import flax\n", | ||
"except:\n", | ||
" !pip install --no-deps git+https://github.com/google/[email protected] |tail -n 1\n", | ||
" import flax\n", | ||
"\n", | ||
"try:\n", | ||
" import chex\n", | ||
"except:\n", | ||
" !pip install --no-deps git+https://github.com/deepmind/[email protected] |tail -n 1\n", | ||
" import chex\n", | ||
"\n", | ||
"try:\n", | ||
" import jumanji\n", | ||
"except:\n", | ||
" !pip install \"jumanji==0.3.1\"\n", | ||
" import jumanji\n", | ||
"\n", | ||
"try:\n", | ||
" import qdax\n", | ||
"except:\n", | ||
" !pip install --no-deps git+https://github.com/adaptive-intelligent-robotics/QDax@main |tail -n 1\n", | ||
|
@@ -62,13 +80,20 @@ | |
"from qdax.core.aurora import AURORA\n", | ||
"from qdax.core.containers.unstructured_repertoire import UnstructuredRepertoire\n", | ||
"from qdax import environments\n", | ||
"from qdax.tasks.brax_envs import scoring_aurora_function\n", | ||
"from qdax.environments.bd_extractors import get_aurora_bd\n", | ||
"from qdax.tasks.brax_envs import (\n", | ||
" create_default_brax_task_components,\n", | ||
" get_aurora_scoring_fn,\n", | ||
")\n", | ||
"from qdax.environments.bd_extractors import (\n", | ||
" AuroraExtraInfoNormalization,\n", | ||
" get_aurora_encoding,\n", | ||
")\n", | ||
"from qdax.core.neuroevolution.buffers.buffer import QDTransition\n", | ||
"from qdax.core.neuroevolution.networks.networks import MLP\n", | ||
"from qdax.core.emitters.mutation_operators import isoline_variation\n", | ||
"from qdax.core.emitters.standard_emitters import MixingEmitter\n", | ||
"\n", | ||
"from qdax.types import Observation\n", | ||
"from qdax.utils import train_seq2seq\n", | ||
"\n", | ||
"\n", | ||
|
@@ -184,7 +209,7 @@ | |
" \"\"\"\n", | ||
"\n", | ||
" actions = policy_network.apply(policy_params, env_state.obs)\n", | ||
" \n", | ||
"\n", | ||
" state_desc = env_state.info[\"state_descriptor\"]\n", | ||
" next_state = env.step(env_state, actions)\n", | ||
"\n", | ||
|
@@ -208,7 +233,7 @@ | |
"source": [ | ||
"## Define the scoring function and the way metrics are computed\n", | ||
"\n", | ||
"The scoring function is used in the evaluation step to determine the fitness and behavior descriptor of each individual. " | ||
"The scoring function is used in the evaluation step to determine the fitness and behavior descriptor of each individual." | ||
] | ||
}, | ||
{ | ||
|
@@ -218,19 +243,35 @@ | |
"outputs": [], | ||
"source": [ | ||
"# Prepare the scoring function\n", | ||
"bd_extraction_fn = functools.partial(\n", | ||
" get_aurora_bd,\n", | ||
" option=observation_option,\n", | ||
" hidden_size=hidden_size,\n", | ||
" traj_sampling_freq=traj_sampling_freq,\n", | ||
" max_observation_size=max_observation_size,\n", | ||
"env, policy_network, scoring_fn, random_key = create_default_brax_task_components(\n", | ||
" env_name=env_name,\n", | ||
" random_key=random_key,\n", | ||
")\n", | ||
"scoring_fn = functools.partial(\n", | ||
" scoring_aurora_function,\n", | ||
" init_states=init_states,\n", | ||
" episode_length=episode_length,\n", | ||
" play_step_fn=play_step_fn,\n", | ||
" behavior_descriptor_extractor=bd_extraction_fn,\n", | ||
"\n", | ||
"def observation_extractor_fn(\n", | ||
" data: QDTransition,\n", | ||
") -> Observation:\n", | ||
" \"\"\"Extract observation from the state.\"\"\"\n", | ||
" state_obs = data.obs[:, ::traj_sampling_freq, :max_observation_size]\n", | ||
"\n", | ||
" # add the x/y position - (batch_size, traj_length, 2)\n", | ||
" state_desc = data.state_desc[:, ::traj_sampling_freq]\n", | ||
"\n", | ||
" if observation_option == \"full\":\n", | ||
" observations = jnp.concatenate([state_desc, state_obs], axis=-1)\n", | ||
" elif observation_option == \"no_sd\":\n", | ||
" observations = state_obs\n", | ||
" elif observation_option == \"only_sd\":\n", | ||
" observations = state_desc\n", | ||
" else:\n", | ||
" raise ValueError(\"Unknown observation option.\")\n", | ||
"\n", | ||
" return observations\n", | ||
"\n", | ||
"# Prepare the scoring function\n", | ||
"aurora_scoring_fn = get_aurora_scoring_fn(\n", | ||
" scoring_fn=scoring_fn,\n", | ||
" observation_extractor_fn=observation_extractor_fn,\n", | ||
")\n", | ||
"\n", | ||
"# Get minimum reward value to make sure qd_score are positive\n", | ||
|
@@ -290,13 +331,6 @@ | |
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Instantiate AURORA\n", | ||
"aurora = AURORA(\n", | ||
" scoring_function=scoring_fn,\n", | ||
" emitter=mixing_emitter,\n", | ||
" metrics_function=metrics_fn,\n", | ||
")\n", | ||
"\n", | ||
"aurora_dims = hidden_size\n", | ||
"centroids = jnp.zeros(shape=(num_centroids, aurora_dims))\n", | ||
"\n", | ||
|
@@ -306,23 +340,19 @@ | |
" (\n", | ||
" repertoire,\n", | ||
" random_key,\n", | ||
" model_params,\n", | ||
" mean_observations,\n", | ||
" std_observations,\n", | ||
" aurora_extra_info\n", | ||
" ) = carry\n", | ||
"\n", | ||
" # update\n", | ||
" (repertoire, _, metrics, random_key,) = aurora.update(\n", | ||
" repertoire,\n", | ||
" None,\n", | ||
" random_key,\n", | ||
" model_params,\n", | ||
" mean_observations,\n", | ||
" std_observations,\n", | ||
" aurora_extra_info=aurora_extra_info,\n", | ||
" )\n", | ||
"\n", | ||
" return (\n", | ||
" (repertoire, random_key, model_params, mean_observations, std_observations),\n", | ||
" (repertoire, random_key, aurora_extra_info),\n", | ||
" metrics,\n", | ||
" )\n", | ||
"\n", | ||
|
@@ -344,38 +374,67 @@ | |
"else:\n", | ||
" ValueError(\"The chosen option is not correct.\")\n", | ||
"\n", | ||
"# define the seq2seq model\n", | ||
"# Define the seq2seq model\n", | ||
"model = train_seq2seq.get_model(\n", | ||
" observations_dims[-1], True, hidden_size=hidden_size\n", | ||
")\n", | ||
"\n", | ||
"# init the model params\n", | ||
"# Init the model params\n", | ||
"random_key, subkey = jax.random.split(random_key)\n", | ||
"model_params = train_seq2seq.get_initial_params(\n", | ||
" model, subkey, (1, *observations_dims)\n", | ||
")\n", | ||
"\n", | ||
"print(jax.tree_map(lambda x: x.shape, model_params))\n", | ||
"\n", | ||
"# Define the encoder function\n", | ||
"encoder_fn = jax.jit(\n", | ||
" functools.partial(\n", | ||
" get_aurora_encoding,\n", | ||
" model=model,\n", | ||
" )\n", | ||
")\n", | ||
"\n", | ||
"# Define the training function\n", | ||
"train_fn = functools.partial(\n", | ||
" train_seq2seq.lstm_ae_train,\n", | ||
" model=model,\n", | ||
" batch_size=lstm_batch_size,\n", | ||
")\n", | ||
"\n", | ||
"# Instantiate AURORA\n", | ||
"aurora = AURORA(\n", | ||
" scoring_function=aurora_scoring_fn,\n", | ||
" emitter=mixing_emitter,\n", | ||
" metrics_function=metrics_fn,\n", | ||
" encoder_function=encoder_fn,\n", | ||
" training_function=train_fn,\n", | ||
")\n", | ||
"\n", | ||
"# define arbitrary observation's mean/std\n", | ||
"mean_observations = jnp.zeros(observations_dims[-1])\n", | ||
"std_observations = jnp.ones(observations_dims[-1])\n", | ||
"\n", | ||
"# init step of the aurora algorithm\n", | ||
"repertoire, _, random_key = aurora.init(\n", | ||
" init_variables,\n", | ||
" centroids,\n", | ||
" random_key,\n", | ||
"# init all the information needed by AURORA to compute encodings\n", | ||
"aurora_extra_info = AuroraExtraInfoNormalization.create(\n", | ||
" model_params,\n", | ||
" mean_observations,\n", | ||
" std_observations,\n", | ||
" l_value_init,\n", | ||
")\n", | ||
"\n", | ||
"# init step of the aurora algorithm\n", | ||
"repertoire, emitter_state, aurora_extra_info, random_key = aurora.init(\n", | ||
" init_variables,\n", | ||
" aurora_extra_info,\n", | ||
" jnp.asarray(l_value_init),\n", | ||
" max_observation_size,\n", | ||
" random_key,\n", | ||
")\n", | ||
"\n", | ||
"# initializing means and stds and AURORA\n", | ||
"random_key, subkey = jax.random.split(random_key)\n", | ||
"model_params, mean_observations, std_observations = train_seq2seq.lstm_ae_train(\n", | ||
" subkey, repertoire, model_params, 0, hidden_size=hidden_size, batch_size=lstm_batch_size\n", | ||
"repertoire, aurora_extra_info = aurora.train(\n", | ||
" repertoire, model_params, iteration=0, random_key=subkey\n", | ||
")\n", | ||
"\n", | ||
"# design aurora's schedule\n", | ||
|
@@ -409,11 +468,11 @@ | |
"while iteration < max_iterations:\n", | ||
"\n", | ||
" (\n", | ||
" (repertoire, random_key, model_params, mean_observations, std_observations),\n", | ||
" (repertoire, random_key, aurora_extra_info),\n", | ||
" metrics,\n", | ||
" ) = jax.lax.scan(\n", | ||
" update_scan_fn,\n", | ||
" (repertoire, random_key, model_params, mean_observations, std_observations),\n", | ||
" (repertoire, random_key, aurora_extra_info),\n", | ||
" (),\n", | ||
" length=log_freq,\n", | ||
" )\n", | ||
|
@@ -427,60 +486,15 @@ | |
" if (iteration + 1) in schedules:\n", | ||
" # train the autoencoder\n", | ||
" random_key, subkey = jax.random.split(random_key)\n", | ||
" (\n", | ||
" model_params,\n", | ||
" mean_observations,\n", | ||
" std_observations,\n", | ||
" ) = train_seq2seq.lstm_ae_train(\n", | ||
" subkey,\n", | ||
" repertoire,\n", | ||
" model_params,\n", | ||
" iteration,\n", | ||
" hidden_size=hidden_size,\n", | ||
" batch_size=lstm_batch_size\n", | ||
" repertoire, aurora_extra_info = aurora.train(\n", | ||
" repertoire, model_params, iteration, subkey\n", | ||
" )\n", | ||
"\n", | ||
" # re-addition of all the new behavioural descriotpors with the new ae\n", | ||
" normalized_observations = (\n", | ||
" repertoire.observations - mean_observations\n", | ||
" ) / std_observations\n", | ||
"\n", | ||
" new_descriptors = model.apply(\n", | ||
" {\"params\": model_params}, normalized_observations, method=model.encode\n", | ||
" )\n", | ||
" repertoire = repertoire.init(\n", | ||
" genotypes=repertoire.genotypes,\n", | ||
" centroids=repertoire.centroids,\n", | ||
" fitnesses=repertoire.fitnesses,\n", | ||
" descriptors=new_descriptors,\n", | ||
" observations=repertoire.observations,\n", | ||
" l_value=repertoire.l_value,\n", | ||
" )\n", | ||
" num_indivs = jnp.sum(repertoire.fitnesses != -jnp.inf)\n", | ||
"\n", | ||
" elif iteration % 2 == 0:\n", | ||
" # update the l value\n", | ||
" num_indivs = jnp.sum(repertoire.fitnesses != -jnp.inf)\n", | ||
"\n", | ||
" # CVC Implementation to keep a constant number of individuals in the archive\n", | ||
" current_error = num_indivs - n_target\n", | ||
" change_rate = current_error - previous_error\n", | ||
" prop_gain = 1 * 10e-6\n", | ||
" l_value = (\n", | ||
" repertoire.l_value\n", | ||
" + (prop_gain * (current_error))\n", | ||
" + (prop_gain * change_rate)\n", | ||
" )\n", | ||
"\n", | ||
" previous_error = current_error\n", | ||
"\n", | ||
" repertoire = repertoire.init(\n", | ||
" genotypes=repertoire.genotypes,\n", | ||
" centroids=repertoire.centroids,\n", | ||
" fitnesses=repertoire.fitnesses,\n", | ||
" descriptors=repertoire.descriptors,\n", | ||
" observations=repertoire.observations,\n", | ||
" l_value=l_value,\n", | ||
" repertoire, previous_error = aurora.container_size_control(\n", | ||
" repertoire,\n", | ||
" target_size=n_target,\n", | ||
" previous_error=previous_error,\n", | ||
" )\n", | ||
"\n", | ||
" iteration += 1" | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -33,6 +33,36 @@ | |
"import jax\n", | ||
"import jax.numpy as jnp\n", | ||
"\n", | ||
"try:\n", | ||
" import brax\n", | ||
"except:\n", | ||
" !pip install git+https://github.com/google/[email protected] |tail -n 1\n", | ||
" import brax\n", | ||
"\n", | ||
"try:\n", | ||
" import flax\n", | ||
"except:\n", | ||
" !pip install --no-deps git+https://github.com/google/[email protected] |tail -n 1\n", | ||
" import flax\n", | ||
"\n", | ||
"try:\n", | ||
" import chex\n", | ||
"except:\n", | ||
" !pip install --no-deps git+https://github.com/deepmind/[email protected] |tail -n 1\n", | ||
" import chex\n", | ||
"\n", | ||
"try:\n", | ||
" import jumanji\n", | ||
"except:\n", | ||
" !pip install \"jumanji==0.3.1\"\n", | ||
" import jumanji\n", | ||
"\n", | ||
"try:\n", | ||
" import qdax\n", | ||
"except:\n", | ||
" !pip install --no-deps git+https://github.com/adaptive-intelligent-robotics/QDax@main |tail -n 1\n", | ||
" import qdax\n", | ||
"\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from matplotlib.patches import Ellipse\n", | ||
"\n", | ||
|
@@ -193,23 +223,23 @@ | |
"iteration_count = 0\n", | ||
"for _ in range(num_iterations):\n", | ||
" iteration_count += 1\n", | ||
" \n", | ||
"\n", | ||
" # sample\n", | ||
" samples, random_key = cmaes.sample(state, random_key)\n", | ||
" \n", | ||
"\n", | ||
" # udpate\n", | ||
" state = cmaes.update(state, samples)\n", | ||
" \n", | ||
"\n", | ||
" # check stop condition\n", | ||
" stop_condition = cmaes.stop_condition(state)\n", | ||
"\n", | ||
" if stop_condition:\n", | ||
" break\n", | ||
" \n", | ||
"\n", | ||
" # store data for plotting\n", | ||
" means.append(state.mean)\n", | ||
" covs.append((state.sigma**2) * state.cov_matrix)\n", | ||
" \n", | ||
"\n", | ||
"print(\"Num iterations before stop condition: \", iteration_count)" | ||
] | ||
}, | ||
|
@@ -281,7 +311,7 @@ | |
" ellipse = Ellipse((mean[0], mean[1]), cov[0, 0], cov[1, 1], fill=False, color='k', ls='--')\n", | ||
" ax.add_patch(ellipse)\n", | ||
" ax.plot(mean[0], mean[1], color='k', marker='x')\n", | ||
" \n", | ||
"\n", | ||
"ax.set_title(f\"Optimization trajectory of CMA-ES between step {traj_min} and step {traj_max}\")\n", | ||
"plt.show()" | ||
] | ||
|
Oops, something went wrong.