-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
117 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
% Numerical solutions of the Static Output Feeedback Equations for the | ||
% Linearized system | ||
|
||
% Author: Murad Abu-Khalaf, MIT CSAIL. | ||
|
||
m1=2; m2=7; alpha1=3; alpha2=5; c=-1.2; | ||
A = [-alpha1/m1 0 0;1 0 -1;0 0 -alpha2/m2]; | ||
B = [0; 0; 1/m2]; | ||
C = [0 c 0]; | ||
|
||
V = eye(3) - C'*inv(C*C')*C; | ||
|
||
G = [0;0;0]; | ||
Q = C'*C+G'*G; | ||
P = icare(A,B,Q); | ||
|
||
for i=1:20 | ||
G = -B'*P*C'*inv(C*C')*C + B'*P; | ||
Q = C'*C+G'*G; | ||
P = icare(A,B,Q); | ||
end | ||
|
||
|
||
V*(P*A+transpose(A)*P)*V | ||
transpose(A)*P + P*A - P*B*transpose(B)*P + transpose(C)*C + transpose(G)*G | ||
|
||
P | ||
G | ||
|
||
% Compare numerical soution with symbolic one | ||
|
||
% [ G1^2 - (alpha1*m2*p11 + alpha2*m1*p33)^2/(m2^2*(alpha1*m2 + alpha2*m1)^2), p22 + G1*G2 - (alpha1^2*p11)/m1^2 - (alpha2*p33*(alpha1*m2*p11 + alpha2*m1*p33))/(m2^3*(alpha1*m2 + alpha2*m1)), (G1*G3*alpha1*m2^3 + G1*G3*alpha2*m1*m2^2 + alpha1*p11*m2*p33 + alpha2*m1*p33^2)/(m2^2*(alpha1*m2 + alpha2*m1))] | ||
% [ p22 + G1*G2 - (alpha1^2*p11)/m1^2 - (alpha2*p33*(alpha1*m2*p11 + alpha2*m1*p33))/(m2^3*(alpha1*m2 + alpha2*m1)), G2^2 + c^2 - (alpha2^2*p33^2)/m2^4, G2*G3 - p22 + (alpha2^2*p33)/m2^2 + (alpha2*p33^2)/m2^3] | ||
% [ (G1*G3*alpha1*m2^3 + G1*G3*alpha2*m1*m2^2 + alpha1*p11*m2*p33 + alpha2*m1*p33^2)/(m2^2*(alpha1*m2 + alpha2*m1)), G2*G3 - p22 + (alpha2^2*p33)/m2^2 + (alpha2*p33^2)/m2^3, G3^2 - p33^2/m2^2] | ||
|
||
p11 = (abs(c)*alpha2+c^2*(m2/alpha2)-c^2*(m1/alpha1)*(m2/alpha2)/((m2/alpha2)+(m1/alpha1))) / (abs(c)*alpha1/(alpha1*m2+alpha2*m1)+alpha1^2/m1^2 ) | ||
p22 = abs(c)*alpha2 + c^2*m2/alpha2 | ||
p33 = abs(c)*m2^2/alpha2 | ||
|
||
p12 = alpha1/m1*p11 | ||
p13 = -((alpha1/m1*p11) + (alpha2/m2*p33)) / (alpha1/m1 + alpha2/m2) | ||
p23 = -alpha2/m2*p33 | ||
|
||
G1 = -(alpha1*m2*p11+alpha2*m1*p33)/(m2*(alpha1*m2+alpha2*m1)) | ||
G2 = 0 | ||
G3 = abs(c)*m2/alpha2 | ||
|
||
|
||
% Note that multiple solutions are possible. Try these numerical solutions | ||
% p11 = 1; | ||
% p22 = 2; | ||
% p33 = 1; | ||
% m1=1; m2=1; alpha1=1; alpha2=1; c =1; | ||
% G1=-1;G2=0;G3=1; | ||
% %G1=1;G2=0;G3=-1; % a second valid solution for G |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
% Symbolic solutions of the Static Output Feeedback Equations for the | ||
% Linearized system | ||
|
||
% Author: Murad Abu-Khalaf, MIT CSAIL. | ||
|
||
|
||
syms p11 p12 p13 p21 p22 p23 p31 p32 p33 | ||
P = [p11 p12 p13; | ||
p21 p22 p23; | ||
p31 p32 p33]; | ||
|
||
p21=p12; | ||
p31=p13; | ||
p32=p23; | ||
|
||
P = subs(P); | ||
|
||
syms alpha1 m1 alpha2 m2 c | ||
assume(c,'real') | ||
|
||
A = [-alpha1/m1 0 0;1 0 -1;0 0 -alpha2/m2]; | ||
B = [0; 0; 1/m2]; | ||
C = [0 c 0]; | ||
|
||
syms G1 G2 G3 | ||
G = [G1 G2 G3]; | ||
|
||
V = eye(3) - C'*inv(C*C')*C; | ||
|
||
Ric = transpose(A)*P + P*A - P*B*transpose(B)*P + transpose(C)*C + transpose(G)*G | ||
Proj = V*(P*A+transpose(A)*P)*V | ||
|
||
% Conditions that guarantee that V*(P*A+transpose(A)*P)*V = 0 | ||
p12=alpha1/m1*p11; | ||
p13=-(alpha1/m1*p11+alpha2/m2*p33)/(alpha1/m1+alpha2/m2); | ||
p23 =-alpha2/m2*p33; | ||
|
||
% Verify that this indeeds solve the kernel equation | ||
simplify(subs(Proj)) | ||
|
||
% get all 6 quadratic equations | ||
simplify(subs(Ric)) | ||
|
||
% Solve symbolically the 6 quadratic equations by first setting G2 = 0 | ||
% (guess using numerical solutions), then solve for p33, then G3, then p22, | ||
% then p11, then G1. | ||
|
||
p11 = (abs(c)*alpha2+c^2*(m2/alpha2)-c^2*(m1/alpha1)*(m2/alpha2)/((m2/alpha2)+(m1/alpha1))) / (abs(c)*alpha1/(alpha1*m2+alpha2*m1)+alpha1^2/m1^2 ) | ||
p22 = abs(c)*alpha2 + c^2*m2/alpha2 | ||
p33 = abs(c)*m2^2/alpha2 | ||
|
||
p12 = alpha1/m1*p11 | ||
p13 = -((alpha1/m1*p11) + (alpha2/m2*p33)) / (alpha1/m1 + alpha2/m2) | ||
p23 = -alpha2/m2*p33 | ||
|
||
G1 = -(alpha1*m2*p11+alpha2*m1*p33)/(m2*(alpha1*m2+alpha2*m1)) | ||
G2 = 0 | ||
G3 = abs(c)*m2/alpha2 | ||
|
||
% Verify that the the equations are solved for this symbolic answer. | ||
simplify(subs(Ric)) | ||
simplify(subs(Proj)) |