Conversations in Machine Behaviour - Season 1
- "Machine’s Moral Codes"
- with Azim Shariff & Iyad Rahwan [Video]
- "How AI Will Shift Human Communication"
- with Nick Obradovich & Bill Powers [Video]
- "The Benefits and Limits of Personal Robots"
- with Cynthia Breazeal & Nick Obradovich [Video]
- "AI in the Real World"
- with Ece Kamar & Nick Obradovich [Video]
- "Ethics in Artificial Intelligence"
- with Jean-François Bonnefon & Iyad Rahwan [Video]
- "Social Learning and Artificial Intelligence"
- with Nicholas Christakis & Iyad Rahwan [Video]
- "Artificially Intelligent Decision Makers in the Real World"
- with Michael Wellman & Bill Powers [Video]
- "AI and the Human Experience"
- with Sandy Pentland & Manuel Cebrian [Video]
- "Artificial Intelligence in the Marketplace"
- with David Parkes & Iyad Rahwan [Video]
- "Social Media and the Bifurcation of the Internet"
- with Manuel Cebrian & Nick Obradovich [Video]
- "Making Human-AI Cooperation Possible"
- with Jacob Crandall & Manuel Cebrian [Video]
- "AI and Censorship"
- with Molly Roberts & Nick Obradovich [Video]
- "How Social Networking Became the Biggest Big Data"
- with David Lazer & Bill Powers [Video]
- "How Social Networks Reinforce Insulated Communities"
- with Matt Jackson & Nick Obradovich [Video]
- "Understanding Evolutionary Robotics" with Josh Bongard & Manuel Cebrian
- with Josh Bongard & Manuel Cebrian [Video]
- "AI and Asimov—The Three Laws in the Real World"
- with Iyad Rahwan & Nick Obradovich [Video]
2019
- Machine behaviour
- Rahwan, Iyad, Manuel Cebrian, Nick Obradovich, Josh Bongard, Jean-François Bonnefon, Cynthia Breazeal, Jacob W. Crandall, et al. Nature 568, no. 7753 (April 2019): 477. [Paper]
- The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviors
- Jackson, M. et al (Knopf Doubleday, 2019).
2018
- ‘It’s reducing a human being to a percentage’: perceptions of justice in algorithmic decisions.
- Binns, R. et al. In Proc. 2018 CHI Conference on Human Factors in Computing Systems 377 (ACM, 2018). [Paper]
- Human decisions and machine predictions.
- Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J. & Mullainathan, S., Q. J. Econ. 133, 237–293 (2018). [Paper]
- Measuring young children’s long-term relationships with social robots.
- Westlund, J. M. K., Park, H. W., Williams, R. & Breazeal, C. In Proc. 17th ACM Conference on Interaction Design and Children 207–218 (ACM, 2018). [Paper]
- Living, Learning and Creating with Social Robots
- [Slides]
- Cooperating with machines.
- Crandall, J. W. et al. Nat. Commun. 9, 233 (2018) [Paper]
- Gender shades: intersectional accuracy disparities in commercial gender classification.
- Buolamwini, J. & Gebru, T. In Proc. 1st Conference on Fairness, Accountability and Transparency (eds Friedler, S. A. & Wilson, C.) 81, 77–91 (PMLR, 2018). [Paper]
- Closing the AI knowledge gap.
- Epstein, Z. et al. (2018). [Paper]
- Model cards for model reporting.
- Mitchell, M. et al. (2018). [Paper]
- Datasheets for datasets.
- Gebru, T. et al. (2018). [Paper]
- The Moral Machine experiment.
- Awad, E. et al. Nature 563, 59–64 (2018). [Paper]
- Visual interpretability for deep learning: a survey.
- Zhang, Q.-S. & Zhu, S.-C. Front. Inf. Technol. Electronic Eng. 19, 27–39 (2018). [pdf]
- The spread of true and false news online.
- Vosoughi, S., Roy, D. & Aral, S. Science 359, 1146–1151 (2018). [Paper]
- Psychlab: a psychology laboratory for deep reinforcement learning agents.
- Leibo, J. Z. et al. (2018) [Paper]
- AI at Google: Our Principles. (2018).
- Pichai, S. [Google Blog]
- Huggable: the impact of embodiment on promoting socio-emotional interactions for young pediatric inpatients.
- Jeong, S., Breazeal, C., Logan, D. & Weinstock, P. In Proc. 2018 CHI Conference on Human Factors in Computing Systems 495 (ACM, 2018).
2017
- Observing algorithmic marketplaces in-the-wild.
- Chen, L. & Wilson, C. et al. SIGecom Exch. 15, 34–39 (2017). [Paper]
- Bias in Online freelance marketplaces: evidence from TaskRabbit and Fiverr.
- Hannák, A. et al. In Proc. ACM Conference on Computer Supported Cooperative Work and Social Computing 1914–1933 (2017). [Paper]
- Ethical issues for autonomous trading agents.
- Wellman, M. P. & Rajan, U. et al. Minds Mach. 27, 609–624 (2017). [Paper]
- Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: theory and experiment.
- Galceran, E., Cunningham, A. G., Eustice, R. M. & Olson, E. et al. Auton. Robots 41, 1367–1382 (2017). [Paper]
- Analyzing Uber’s ride-sharing economy.
- Kooti, F. et al. In Proc. 26th International Conference on World Wide Web 574–582 (International World Wide Web Conferences Steering Committee, 2017). [Paper]
- Growing growth mindset with a social robot peer.
- Park, H. W., Rosenberg-Kima, R., Rosenberg, M., Gordon, G. & Breazeal, C. et al. In Proc. 2017 ACM/IEEE International Conference on Human–Robot Interaction 137–145 (ACM, 2017). [Paper]
- Flat vs. expressive storytelling: young children’s learning and retention of a social robot’s narrative.
- Kory Westlund, J. M. et al. Front. Hum. Neurosci. 11, 295 (2017). [Paper]
- Bots as virtual confederates: design and ethics.
- Krafft, P. M., Macy, M. & Pentland, A. et al. In Proc. 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing 183–190 (ACM, 2017). [Paper]
- The AI detectives.
- Voosen, P. et al. Science 357, 22–27 (2017). [Paper]
- Towards a rigorous science of interpretable machine learning.
- Doshi-Velez, F. & Kim, B. et al. [Paper]
- Identifying unknown unknowns in the open world: representations and policies for guided exploration.
- Lakkaraju, H., Kamar, E., Caruana, R. & Horvitz, E. In Proc. 31st Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence 2 (2017). [Paper]
- Algorithmic decision making and the cost of fairness.
- Corbett-Davies, S., Pierson, E., Feller, A., Goel, S. & Huq, A. et al. In Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 797–806 (ACM, 2017). [Paper]
- Semantics derived automatically from language corpora contain human-like biases.
- Caliskan, A., Bryson, J. J. & Narayanan, A. et al. Science 356, 183–186 (2017). [Paper]
- Runaway feedback loops in predictive policing.
- Ensign, D., Friedler, S. A., Neville, S., Scheidegger, C. & Venkatasubramanian, S. et al. [Paper]
- Mastering the game of Go without human knowledge.
- Silver, D. et al. Nature 550, 354–359 (2017). [Paper]
- SmoothGrad: removing noise by adding noise. (2017).
- Smilkov, D., Thorat, N., Kim, B., Viégas, F. & Wattenberg, M. et al. [Paper]
- Even good bots fight: the case of Wikipedia.
- Tsvetkova, M., García-Gavilanes, R., Floridi, L. & Yasseri, T. PLoS ONE 12, e0171774 (2017). [Paper]
- Evidence of complex contagion of information in social media: an experiment using Twitter bots.
- Mønsted, B., Sapieżyński, P., Ferrara, E. & Lehmann, S. PLoS ONE 12, e0184148 (2017). [Paper]
- Toward scalable social alt text: conversational crowdsourcing as a tool for refining vision-to-language technology for the blind. Proc.
- Salisbury, E., Kamar, E. & Morris, M. R. et al. 5th AAAI Conference on Human Computation and Crowdsourcing (2017). [Paper]
- What can machine learning do? Workforce implications.
- Brynjolfsson, E. & Mitchell, T. et al. Science 358, 1530–1534 (2017). [Paper]
- Deep reinforcement learning from human preferences.
- Christiano, P. F. et al. In Proc. Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) 4299–4307 (Curran Associates, 2017). [Paper]
- Understanding human–machine networks: a cross-disciplinary survey.
- Tsvetkova, M. et al. ACM Comput. Surv. 50, 12:1–12:35 (2017). [Paper]
- Locally noisy autonomous agents improve global human coordination in network experiments.
- Shirado, H. & Christakis, N. A. et al. Nature 545, 370–374 (2017)
2016
- Building Machines That Learn and Think Like People
- Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, Samuel J. Gershman, Behavioral and Brain Sciences, (2016). [Paper]
- Why should I trust you? Explaining the predictions of any classifier.
- Ribeiro, M. T., Singh, S. & Guestrin, C. et al. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1135–1144 (ACM, 2016). [Paper]
- The rise of social bots.
- Ferrara, E., Varol, O., Davis, C., Menczer, F. & Flammini, A. et al. Commun. ACM 59, 96–104 (2016). [Paper]
- Concrete problems in AI safety.
- Amodei, D. et al. (2016). [Paper]
- The social dilemma of autonomous vehicles.
- Bonnefon, J.-F., Shariff, A. & Rahwan, I. Science 352, 1573–1576 (2016). [Paper]
- Machine bias.
- Angwin, J., Larson, J., Mattu, S. & Kirchner, L. et al. ProPublica (2016). [Article]
- Multi-agent cooperation and the emergence of (natural) language.
- Lazaridou, A., Peysakhovich, A. & Baroni, M. et al. [Paper]
- Artificial Intelligence and Life in 2030. One Hundred Year Study on Artificial Intelligence: Report of the 2015–2016
- Stone, P. et al. Study Panel (Stanford University, 2016). [Report]
- Noise: how to overcome the high, hidden cost of inconsistent decision making. Harvard Business Review (2016).
- Kahneman, D., Rosenfield, A. M., Gandhi, L. & Blaser, T. et al. [Article]
- The AI Now report: The Social and Economic Implications of Artificial Intelligence Technologies in the Near-term.
- Crawford, K. et al. (2016). [Report]
- Synchrony and reciprocity: key mechanisms for social companion robots in therapy and care.
- Lorenz, T., Weiss, A. & Hirche, S. et al. Int. J. Soc. Robot. 8, 125–143 (2016). [pdf]
- Killer Robots: Legality and Ethicality of Autonomous Weapons
- Krishnan, A. et al. (Routledge, 2016).
- O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (Broadway Books, 2016).
2015
- Algorithm aversion: people erroneously avoid algorithms after seeing them err.
- Dietvorst, B. J., Simmons, J. P. & Massey, C. et al. J. Exp. Psychol. Gen. 144, 114–126 (2015). [Article]
- The rise of the social algorithm.
- Lazer, D. et al. Science 348, 1090–1091 (2015). [Article]
- Economic reasoning and artificial intelligence.
- Parkes, D. C. & Wellman, M. P. et al. Science 349, 267–272 (2015). [Article]
- Robots that can adapt like animals.
- Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. et al. Nature 521, 503–507 (2015). [Paper]
- Automated Experiments on Ad Privacy Settings.
- Datta, A., Tschantz, M. C. & Datta, A. et al. Proc. Privacy Enhancing Technologies 2015, 92–112 (2015). [Paper]
- How to solve the world’s biggest problems.
- Ledford, H. et al. Nature 525, 308–311 (2015). [Article]
- Exposure to ideologically diverse news and opinion on Facebook.
- Bakshy, E., Messing, S. & Adamic, L. A. et al. Science 348, 1130–1132 (2015). [pdf]
- Autonomous weapons: an open letter from AI & robotics researchers.
- Future of Life Institute. (2015) [Letter]
- Pentland, A. Social Physics: How Social Networks Can Make Us Smarter (Penguin, 2015).
2014
- Exploring the filter bubble: the effect of using recommender systems on content diversity.
- Nguyen, T. T., Hui, P.-M., Harper, F. M., Terveen, L. & Konstan, J. A. et al. In Proc. 23rd International Conference on World Wide Web 677–686 (ACM, 2014). [Paper]
- Engineering the public: big data, surveillance and computational politics.
- Tufekci, Z. et al. [Link]
- Experimental evidence of massive-scale emotional contagion through social networks.
- Kramer, A. D. I., Guillory, J. E. & Hancock, J. T. et al. Proc. Natl Acad. Sci. USA 111, 8788–8790 (2014). [pdf]
- The strategic robot problem: lethal autonomous weapons in war.
- Roff, H. M. et al. J. Mil. Ethics 13, 211–227 (2014).
2013
- Intriguing properties of neural networks.
- Szegedy, C. et al. (2013). [Paper]
- Abrupt rise of new machine ecology beyond human response time.
- Johnson, N. et al. Sci. Rep. 3, 2627 (2013). [Paper]
- Discrimination in online ad delivery.
- Sweeney, L. et al. Queueing Syst. 11, 10 (2013). [pdf]
- Moore’s law versus Murphy’s law: algorithmic trading and its discontents.
- Kirilenko, A. A. & Lo, A. W. et al. J. Econ. Perspect. 27, 51–72 (2013). [Article]
- The arcade learning environment: an evaluation platform for general agents.
- Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. et al. J. Artif. Intell. Res. 47, 253–279 (2013). [Paper]
- Learning fair representations.
- Zemel, R., Wu, Y., Swersky, K., Pitassi, T. & Dwork, C. et al. In Proc. International Conference on Machine Learning 325–333 (2013). [Paper]
- Emergent sensing of complex environments by mobile animal groups.
- Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. et al. Science 339, 574–576 (2013). [Link]
- Robustness and Evolvability in Living Systems
- Wagner, A. et al. (Princeton Univ. Press, 2013).
2012
- What Question Would Turing Pose Today?
- Barbara Grosz, AI Magazine, (2012). [Paper]
- Online dating: a critical analysis from the perspective of psychological science.
- Finkel, E. J., Eastwick, P. W., Karney, B. R., Reis, H. T. & Sprecher, S. et al. Psychol. Sci. Public Interest 13, 3–66 (2012).[pdf]
- Feeling robots and human zombies: mind perception and the uncanny valley.
- Gray, K. & Wegner, D. M. et al. Cognition 125, 125–130 (2012). [Paper]
- Socially assistive robots in elderly care: a systematic review into effects and effectiveness.
- Bemelmans, R., Gelderblom, G. J., Jonker, P. & de Witte, L. et al. J. Am. Med. Dir. Assoc. 13, 114–120 (2012).
- Combining human and machine intelligence in large-scale crowdsourcing.
- Kamar, E., Hacker, S. & Horvitz, E. et al. 11th International Conference on Autonomous Agents and Multiagent Systems 467–474. [Paper]
2011
- Robot vacuum cleaner personality and behavior.
- Hendriks, B., Meerbeek, B., Boess, S., Pauws, S. & Sonneveld, M. et al. Int. J. Soc. Robot. 3, 187–195 (2011). [Paper]
- Drone warfare: blowback from the new American way of war.
- Hudson, L., Owens, C. S. & Flannes, M. et al. Middle East Policy 18, 122–132 (2011). [Article]
- Uninformed individuals promote democratic consensus in animal groups.
- Couzin, I. D. et al. Science 334, 1578–1580 (2011). [Paper]
2010