Skip to content

IV-tuning: Parameter-Efficient Transfer Learning for Infrared-Visible Tasks

Notifications You must be signed in to change notification settings

Yummy198913/IV-tuning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 

Repository files navigation

IV-tuning: Parameter-Efficient Transfer Learning
for Infrared-Visible Tasks

The official implemention for IV-tuning: Parameter-Efficient Transfer Learning for Infrared-Visible Tasks

paper:https://arxiv.org/abs/2412.16654

Introduction

IV-tuning is an efficient and effective Parameter-Efficient Transfer Learning (PETL) method for Infrared-Visible (IR-VIS) tasks. With approximately 3% of the backbone parameters trainable, IV-tuning achieves SOTA performance compared to previous IR-VIS methods, including Image Fusion methods and end-to-end IR-VIS methods in Object Detection and Semantic Segmentation.

Framework

overview

Main Results

Semantic Segmentation (MSRS Dataset)

Backbone-Head Method #TP mIoU Config CKPT Logs
ViT-L+SETR FFT 304.93M 75.08
ViT-L+SETR IV-tuning 8.90M(2.84%) 75.51(+0.43)
ViT-L+Segformer FFT 304.93M 75.42
ViT-L+Segformer IV-tuning 8.90M(2.84%) 76.98(+1.56)
Swin-L+Segformer FFT 192.50M 78.23
Swin-L+Segformer IV-tuning 6.01M(3.03%) 78.60(+0.37)

Object Detection (M3FD Dataset)

Backbone-Head Method #TP mAP mAP50 mAP75 Config CKPT Logs
Swin-L+CO-DETR FFT 192.50M 59.5 90.2 62.5
Swin-L+CO-DETR IV-tuning 6.06M(3.01%) 61.3(+1.8) 90.6(+0.4) 65.2(+2.7)
Swin-L+DINO FFT 192.50M 60.2 91.1 64.1
Swin-L+DINO IV-tuning 6.06M(3.01%) 61.1(+0.9) 91.9(+0.8) 66.0(+1.9)
ViTDet-B FFT 85.89M 44.1 - 48.9
ViTDet-B IV-tuning 3.66M(4.09%) 45.0(+0.9) - 50.2(+1.3)

TODO

  • Upload the code, config file, checkpoint model and logs.

Citation

If you find our work helpful, please cite our paper:

@article{zhang2024iv,
  title={IV-tuning: Parameter-Efficient Transfer Learning for Infrared-Visible Tasks},
  author={Zhang, Yaming and Gao, Chenqiang and Liu, Fangcen and Guo, Junjie and Wang, Lan and Peng, Xinggan and Meng, Deyu},
  journal={arXiv preprint arXiv:2412.16654},
  year={2024}
}

About

IV-tuning: Parameter-Efficient Transfer Learning for Infrared-Visible Tasks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published