-
Notifications
You must be signed in to change notification settings - Fork 155
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(UDF):introduce new UDF which applies a selective merge to 2 data…
…frames (#316)
- Loading branch information
Showing
2 changed files
with
262 additions
and
0 deletions.
There are no files selected for viewing
78 changes: 78 additions & 0 deletions
78
src/main/scala/com/yotpo/metorikku/code/steps/SelectiveMerge.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
package com.yotpo.metorikku.code.steps | ||
|
||
import com.yotpo.metorikku.exceptions.MetorikkuException | ||
import org.apache.log4j.{LogManager, Logger} | ||
import org.apache.spark.sql.{Column, DataFrame} | ||
import org.apache.spark.sql.functions._ | ||
|
||
object SelectiveMerge { | ||
private val message = "You need to send 3 parameters with the names of the dataframes to merge and the key(s) to merge on" + | ||
"(merged df1 into df2 favouring values from df2): df1, df2, Seq[String]" | ||
private val log: Logger = LogManager.getLogger(this.getClass) | ||
private val colRenamePrefix = "df2_" | ||
private class InputMatcher[K](ks: K*) { | ||
def unapplySeq[V](m: Map[K, V]): Option[Seq[V]] = if (ks.forall(m.contains)) Some(ks.map(m)) else None | ||
} | ||
private val InputMatcher = new InputMatcher("df1", "df2", "joinKeys") | ||
|
||
|
||
def run(ss: org.apache.spark.sql.SparkSession, metricName: String, dataFrameName: String, params: Option[Map[String, String]]): Unit = { | ||
params.get match { | ||
case InputMatcher(df1Name, df2Name, joinKeysStr) => { | ||
log.info(s"Selective merging $df1Name into $df2Name using keys $joinKeysStr") | ||
val df1 = ss.table(df1Name) | ||
val df2 = ss.table(df2Name) | ||
val joinKeys = joinKeysStr.split(" ").toSeq | ||
|
||
if (df1.isEmpty) { | ||
log.error("DF1 is empty") | ||
throw MetorikkuException("DF1 is empty") | ||
} | ||
|
||
if (df2.isEmpty) { | ||
log.warn("DF2 is empty.") | ||
df1.createOrReplaceTempView(dataFrameName) | ||
} | ||
else { | ||
merge(df1, df2, joinKeys).createOrReplaceTempView(dataFrameName) | ||
} | ||
} | ||
case _ => throw MetorikkuException(message) | ||
} | ||
} | ||
|
||
def merge(df1: DataFrame, df2: DataFrame, joinKeys: Seq[String]): DataFrame = { | ||
val mergedDf = outerJoinWithAliases(df1, df2, joinKeys) | ||
overrideConflictingValues(df1, df2, mergedDf, joinKeys) | ||
} | ||
|
||
def outerJoinWithAliases(df1: DataFrame, df2: DataFrame, joinKeys: Seq[String]): DataFrame = { | ||
val columns = df2.schema.map(f => col(f.name)).collect({ case name: Column => name }).toArray | ||
val columnsRenamed = columns.map(column => if (joinKeys.contains(s"$column")) s"$column" else s"$colRenamePrefix$column") | ||
|
||
df2.select( | ||
columns.zip(columnsRenamed).map{ | ||
case (x: Column, y) => { | ||
x.alias(y) | ||
} | ||
}: _* | ||
).join(df1, joinKeys,"outer") | ||
} | ||
|
||
def overrideConflictingValues(df1: DataFrame, df2: DataFrame, mergedDf: DataFrame, joinKeys: Seq[String]): DataFrame = { | ||
var mergedDfBuilder = mergedDf | ||
for (col <- df2.schema) { | ||
val colNameDf2 = colRenamePrefix + col.name | ||
if (df1.schema.contains(col) && !joinKeys.contains(col.name)) { | ||
mergedDfBuilder = mergedDfBuilder | ||
.withColumn(colNameDf2, | ||
when(mergedDfBuilder(colNameDf2).isNotNull, mergedDfBuilder(colNameDf2)) | ||
.otherwise(df1(col.name))) | ||
.drop(col.name) | ||
} | ||
mergedDfBuilder = mergedDfBuilder.withColumnRenamed(colNameDf2, col.name) | ||
} | ||
|
||
mergedDfBuilder | ||
} | ||
} |
184 changes: 184 additions & 0 deletions
184
src/test/scala/com/yotpo/metorikku/code/steps/test/SelectiveMergeTests.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
package com.yotpo.metorikku.code.steps.test | ||
|
||
import com.yotpo.metorikku.code.steps.SelectiveMerge | ||
import com.yotpo.metorikku.code.steps.SelectiveMerge.merge | ||
import com.yotpo.metorikku.exceptions.MetorikkuException | ||
import org.apache.log4j.{Level, LogManager, Logger} | ||
import org.apache.spark.sql.types.StructField | ||
import org.apache.spark.sql.{DataFrame, SQLContext, SparkSession} | ||
import org.scalatest.{FunSuite, _} | ||
|
||
import scala.collection.mutable.ArrayBuffer | ||
|
||
//noinspection ScalaStyle | ||
class SelectiveMergeTests extends FunSuite with BeforeAndAfterEach { | ||
private val log: Logger = LogManager.getLogger(this.getClass) | ||
private var sparkSession : SparkSession = _ | ||
Logger.getLogger("org").setLevel(Level.WARN) | ||
|
||
override def beforeEach() { | ||
sparkSession = SparkSession.builder().appName("udf tests") | ||
.master("local") | ||
.config("", "") | ||
.getOrCreate() | ||
} | ||
|
||
def assertSuccess(df1: DataFrame, df2: DataFrame, isEqual: Boolean): Unit = { | ||
val sortedSchemeArrBuff: ArrayBuffer[String] = ArrayBuffer[String]() | ||
df1.schema.sortBy({f: StructField => f.name}).map({f: StructField => sortedSchemeArrBuff += f.name}) | ||
val sortedSchemeArr: Array[String] = sortedSchemeArrBuff.sortWith(_<_).toArray | ||
|
||
|
||
val sortedMergedDf = df1.orderBy("employee_name").select("employee_name", sortedSchemeArr:_*) | ||
val sortedExpectedDf = df2.orderBy("employee_name").select("employee_name", sortedSchemeArr:_*) | ||
val equals = sortedMergedDf.except(sortedExpectedDf).isEmpty | ||
|
||
if (equals != isEqual) { | ||
if (!equals) { | ||
log.error("Actual and expected differ:") | ||
log.error("Actual:\n" + getDfAsStr(sortedMergedDf)) | ||
log.error("Expected:\n" + getDfAsStr(sortedExpectedDf)) | ||
assert(false) | ||
} | ||
else { | ||
log.error("Actual and expected are equal (but expected to differ)") | ||
assert(false) | ||
} | ||
} | ||
} | ||
|
||
def getDfAsStr(df: DataFrame): String = { | ||
val showString = classOf[org.apache.spark.sql.DataFrame].getDeclaredMethod("showString", classOf[Int], classOf[Int], classOf[Boolean]) | ||
showString.setAccessible(true) | ||
showString.invoke(df, 10.asInstanceOf[Object], 20.asInstanceOf[Object], false.asInstanceOf[Object]).asInstanceOf[String] | ||
} | ||
|
||
test("Selective merge") { | ||
val sparkSession = SparkSession.builder.appName("test").getOrCreate() | ||
val sqlContext= new SQLContext(sparkSession.sparkContext) | ||
import sqlContext.implicits._ | ||
|
||
val employeeData1 = Seq( | ||
("James", 1, 11, 111, 1111), | ||
("Maria", 2, 22, 222, 2222) | ||
) | ||
val df1 = employeeData1.toDF("employee_name", "salary", "age", "fake", "fake2") | ||
|
||
val employeeData2 = Seq( | ||
("James", 1, 33, 333), | ||
("Jen", 4, 44, 444), | ||
("Jeff", 5, 55, 555) | ||
) | ||
val df2 = employeeData2.toDF("employee_name", "salary", "age", "bonus") | ||
|
||
val simpleDataExpectedAfterMerge = Seq( | ||
("James", new Integer(1) /* Salary */, new Integer(33) /* age */, new Integer(111) /* fake */, | ||
new Integer(1111) /* fake2 */, new Integer(333) /* bonus */), | ||
("Maria", new Integer(2) /* Salary */, new Integer(22) /* age */, new Integer(222) /* fake */, | ||
new Integer(2222) /* fake2 */, null.asInstanceOf[Integer] /* bonus */), | ||
("Jen", new Integer(4) /* Salary */, new Integer(44) /* age */, null.asInstanceOf[Integer] /* fake */, | ||
null.asInstanceOf[Integer] /* fake2 */, new Integer(444) /* bonus */), | ||
("Jeff", new Integer(5) /* Salary */, new Integer(55) /* age */, null.asInstanceOf[Integer] /* fake */, | ||
null.asInstanceOf[Integer] /* fake2 */, new Integer(555) /* bonus */) | ||
) | ||
val expectedDf = simpleDataExpectedAfterMerge.toDF("employee_name", "salary", "age", "fake", "fake2", "bonus") | ||
|
||
val simpleDataNotExpectedAfterMerge = Seq( | ||
("James", new Integer(10) /* Salary */, new Integer(33) /* age */, new Integer(111) /* fake */, | ||
new Integer(1111) /* fake2 */, new Integer(333) /* bonus */), | ||
("Maria", new Integer(20) /* Salary */, new Integer(22) /* age */, new Integer(222) /* fake */, | ||
new Integer(2222) /* fake2 */, null.asInstanceOf[Integer] /* bonus */), | ||
("Jen", new Integer(40) /* Salary */, new Integer(44) /* age */, null.asInstanceOf[Integer] /* fake */, | ||
null.asInstanceOf[Integer] /* fake2 */, new Integer(444) /* bonus */), | ||
("Jeff", new Integer(50) /* Salary */, new Integer(55) /* age */, null.asInstanceOf[Integer] /* fake */, | ||
null.asInstanceOf[Integer] /* fake2 */, new Integer(555) /* bonus */) | ||
) | ||
val notExpectedDf = simpleDataNotExpectedAfterMerge.toDF("employee_name", "salary", "age", "fake", "fake2", "bonus") | ||
|
||
val mergedDf = merge(df1, df2, Seq("employee_name")) | ||
|
||
assertSuccess(mergedDf, expectedDf, isEqual = true) | ||
assertSuccess(mergedDf, notExpectedDf, isEqual = false) | ||
} | ||
|
||
test("String and numbers mixed fields") { | ||
val sparkSession = SparkSession.builder.appName("test").getOrCreate() | ||
val sqlContext= new SQLContext(sparkSession.sparkContext) | ||
import sqlContext.implicits._ | ||
|
||
val employeeData1 = Seq( | ||
("James", "Sharon", 11, 111, 1111), | ||
("Maria", "Bob", 22, 222, 2222) | ||
) | ||
val df1 = employeeData1.toDF("employee_name", "last_name", "age", "fake", "fake2") | ||
|
||
val employeeData2 = Seq( | ||
("James", 1, 33, 333), | ||
("Jen", 4, 44, 444), | ||
("Jeff", 5, 55, 555) | ||
) | ||
val df2 = employeeData2.toDF("employee_name", "salary", "age", "bonus") | ||
|
||
val simpleDataExpectedAfterMerge = Seq( | ||
("James", "Sharon" /* Last Name */, new Integer(1) /* Salary */, new Integer(33) /* age */, | ||
new Integer(111) /* fake */, new Integer(1111) /* fake2 */, new Integer(333) /* bonus */), | ||
("Maria", "Bob" /* Last Name */, null.asInstanceOf[Integer] /* Salary */, new Integer(22) /* age */, | ||
new Integer(222) /* fake */, new Integer(2222) /* fake2 */, null.asInstanceOf[Integer] /* bonus */), | ||
("Jen", null.asInstanceOf[String] /* Last Name */, new Integer(4) /* Salary */, new Integer(44) /* age */, | ||
null.asInstanceOf[Integer] /* fake */, null.asInstanceOf[Integer] /* fake2 */, new Integer(444) /* bonus */), | ||
("Jeff", null.asInstanceOf[String] /* Last Name */, new Integer(5) /* Salary */, new Integer(55) /* age */, | ||
null.asInstanceOf[Integer] /* fake */, null.asInstanceOf[Integer] /* fake2 */, new Integer(555) /* bonus */) | ||
) | ||
val expectedDf = simpleDataExpectedAfterMerge.toDF("employee_name", "last_name", "salary", "age", "fake", "fake2", "bonus") | ||
|
||
val mergedDf = merge(df1, df2, Seq("employee_name")) | ||
|
||
assertSuccess(mergedDf, expectedDf, isEqual = true) | ||
} | ||
|
||
test("df2 has more columns") { | ||
val sparkSession = SparkSession.builder.appName("test").getOrCreate() | ||
val sqlContext= new SQLContext(sparkSession.sparkContext) | ||
import sqlContext.implicits._ | ||
|
||
val employeeData1 = Seq( | ||
("James", 1, 11), | ||
("Maria", 2, 22), | ||
("Albert", 3, 33) | ||
) | ||
val df1 = employeeData1.toDF("employee_name", "salary", "age") | ||
|
||
val employeeData2 = Seq( | ||
("James", 10, 33, 333, 3333), | ||
("Jen", 4, 44, 444, 4444) | ||
) | ||
val df2 = employeeData2.toDF("employee_name", "salary", "age", "bonus", "fake") | ||
|
||
val simpleDataExpectedAfterMerge = Seq( | ||
("James", new Integer(10) /* Salary */, new Integer(33) /* age */, | ||
new Integer(333) /* Bonus */, new Integer(3333) /* fake */), | ||
("Maria", new Integer(2) /* Salary */, new Integer(22) /* age */, | ||
null.asInstanceOf[Integer] /* Bonus */, null.asInstanceOf[Integer] /* fake */), | ||
("Jen", new Integer(4) /* Salary */, new Integer(44) /* age */, | ||
new Integer(444) /* Bonus */, new Integer(4444) /* fake */), | ||
("Albert",new Integer(3) /* Salary */, new Integer(33) /* age */, | ||
null.asInstanceOf[Integer] /* Bonus */, null.asInstanceOf[Integer] /* fake */) | ||
) | ||
val expectedDf = simpleDataExpectedAfterMerge.toDF("employee_name", "salary", "age", "bonus", "fake") | ||
|
||
val mergedDf = merge(df1, df2, Seq("employee_name")) | ||
|
||
assertSuccess(mergedDf, expectedDf, isEqual = true) | ||
} | ||
|
||
test("Empty params metorikku exception") { | ||
val params: Option[Map[String, String]] = Option(Map("df1" -> "df1Name", "df2" -> "df2Name")) | ||
assertThrows[MetorikkuException] { | ||
SelectiveMerge.run(sparkSession, "MetricName", "DataFrameName", params) | ||
} | ||
} | ||
|
||
override def afterEach() { | ||
sparkSession.stop() | ||
} | ||
} |