Skip to content

Within the Dynamic Context: Inertia-aware 3D Human Modeling with Pose Sequence

Notifications You must be signed in to change notification settings

Yifever20002/Dyco

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

82 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Within the Dynamic Context: Inertia-aware 3D Human Modeling with Pose Sequence

Within the Dynamic Context: Inertia-aware 3D Human Modeling with Pose Sequence
Yutong Chen, Yifan Zhan, Zhihang Zhong, Wei Wang, Xiao Sun, Yu Qiao, Yinqiang Zheng
European Conference on Computer Vision (ECCV), 2024

image

A. Prerequisite

Configure environment

Create a virtual environment and install the required packages

For Cuda11.3:

conda create --name Dyco python=3.7 && conda activate Dyco
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113

For Cuda11.8:

conda create --name Dyco python=3.8 && conda activate Dyco
pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

Install other requirements:

pip install -r requirements.txt
pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

Download SMPL model

Copy the smpl model.

SMPL_DIR=/path/to/smpl

MODEL_DIR=$SMPL_DIR/smplify_public/code/models

cp $MODEL_DIR/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl third_parties/smpl/models

Follow this page to remove Chumpy objects from the SMPL model.

Download vgg.pth

Download the vgg.pth from here.

VGG_DIR=/path/to/vgg.pth

cp $VGG_DIR third_parties/lpips/weights/v0.1/

Download RAFT model

cd RAFT && ./download_models.sh

B. Experiments on I3D-Human Dataset

The I3D-Human Dataset focuses on capturing variations in clothing appearance under approximately identical poses. Compared with existing benchmarks, we outfit the subjects in loose clothing such as dresses and light jackets and encourage movements involving acceleration or deceleration, such as sudden stops after spinning, swaying, and flapping sleeves. Our capturing equipment consists of 10 DJI Osmo Action cameras, shooting at a frame rate of 100fps while synchronized with an audio signal. The final processed dataset records 10k frames of sequence from 6 subjects in total. Click here to download our I3D-Human Dataset and copy it to /path/to/Dyco's parent/dataset/.

image

Train and Test

Baseine

sh scripts/I3D-Human/ID1_1/ID1_1_humannerf.sh
sh scripts/I3D-Human/ID1_1/ID1_1_humannerf_test.sh

+ Conditions

sh scripts/I3D-Human/ID1_1/ID1_1_posedelta.sh
sh scripts/I3D-Human/ID1_1/ID1_1_posedelta_test.sh

You can also download our pretrained models here. Just put the "experiments" under /path/to/Dyco/experiments and you can simply run

sh scripts/I3DHuman/ID1_1/ID1_1_posedelta_test.sh

to get the per-subject score reported in our paper:

Novel Views Novel Poses
Data PSNR SSIM LPIPS PSNR SSIM LPIPS
ID1_1 31.31 0.9747 29.66 30.34 0.9706 34.41
ID1_2 31.20 0.9731 32.67 30.45 0.9710 33.19
ID2_1 29.80 0.9742 35.24 27.91 0.9653 45.44
ID3_1 32.57 0.9733 40.60 31.77 0.9694 45.17
Average 31.22 0.9738 34.54 30.12 0.9691 39.55

C. Experiments on ZJU-MoCap Dataset

Data preparation

Fill in the form to download the dataset.

Create a soft link:

ln -s /path/to/zju_mocap data/zju

Then preprocess the data. Take Subject-390 for example:

tar -xvf CoreView_390.tar.gz
cd tools/prepare_zju_mocap
python prepare_dataset.py --cfg=configs/390_train.yaml
python prepare_dataset.py --cfg=configs/390_novelview.yaml
python prepare_dataset.py --cfg=configs/390_novelpose.yaml

Train and Test

+ Conditions

sh scripts/zju_mocap/313/313_posedelta.sh
sh scripts/zju_mocap/313/313_posedelta_test.sh

About

Within the Dynamic Context: Inertia-aware 3D Human Modeling with Pose Sequence

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published