Project Page | Paper | Data
Within the Dynamic Context: Inertia-aware 3D Human Modeling with Pose Sequence
Yutong Chen, Yifan Zhan, Zhihang Zhong, Wei Wang, Xiao Sun, Yu Qiao, Yinqiang Zheng
European Conference on Computer Vision (ECCV), 2024
Create a virtual environment and install the required packages
For Cuda11.3:
conda create --name Dyco python=3.7 && conda activate Dyco
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
For Cuda11.8:
conda create --name Dyco python=3.8 && conda activate Dyco
pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118
Install other requirements:
pip install -r requirements.txt
pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
Copy the smpl model.
SMPL_DIR=/path/to/smpl
MODEL_DIR=$SMPL_DIR/smplify_public/code/models
cp $MODEL_DIR/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl third_parties/smpl/models
Follow this page to remove Chumpy objects from the SMPL model.
Download the vgg.pth from here.
VGG_DIR=/path/to/vgg.pth
cp $VGG_DIR third_parties/lpips/weights/v0.1/
cd RAFT && ./download_models.sh
The I3D-Human Dataset focuses on capturing variations in clothing appearance under approximately identical poses. Compared with existing benchmarks, we outfit the subjects in loose clothing such as dresses and light jackets and encourage movements involving acceleration or deceleration, such as sudden stops after spinning, swaying, and flapping sleeves. Our capturing equipment consists of 10 DJI Osmo Action cameras, shooting at a frame rate of 100fps while synchronized with an audio signal. The final processed dataset records 10k frames of sequence from 6 subjects in total. Click here to download our I3D-Human Dataset and copy it to /path/to/Dyco's parent/dataset/.
sh scripts/I3D-Human/ID1_1/ID1_1_humannerf.sh
sh scripts/I3D-Human/ID1_1/ID1_1_humannerf_test.sh
sh scripts/I3D-Human/ID1_1/ID1_1_posedelta.sh
sh scripts/I3D-Human/ID1_1/ID1_1_posedelta_test.sh
You can also download our pretrained models here. Just put the "experiments" under /path/to/Dyco/experiments and you can simply run
sh scripts/I3DHuman/ID1_1/ID1_1_posedelta_test.sh
to get the per-subject score reported in our paper:
Novel Views | Novel Poses | |||||
---|---|---|---|---|---|---|
Data | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS |
ID1_1 | 31.31 | 0.9747 | 29.66 | 30.34 | 0.9706 | 34.41 |
ID1_2 | 31.20 | 0.9731 | 32.67 | 30.45 | 0.9710 | 33.19 |
ID2_1 | 29.80 | 0.9742 | 35.24 | 27.91 | 0.9653 | 45.44 |
ID3_1 | 32.57 | 0.9733 | 40.60 | 31.77 | 0.9694 | 45.17 |
Average | 31.22 | 0.9738 | 34.54 | 30.12 | 0.9691 | 39.55 |
Fill in the form to download the dataset.
Create a soft link:
ln -s /path/to/zju_mocap data/zju
Then preprocess the data. Take Subject-390 for example:
tar -xvf CoreView_390.tar.gz
cd tools/prepare_zju_mocap
python prepare_dataset.py --cfg=configs/390_train.yaml
python prepare_dataset.py --cfg=configs/390_novelview.yaml
python prepare_dataset.py --cfg=configs/390_novelpose.yaml
sh scripts/zju_mocap/313/313_posedelta.sh
sh scripts/zju_mocap/313/313_posedelta_test.sh