Skip to content

Code for "Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning"

License

Notifications You must be signed in to change notification settings

YU1ut/Multi-Task-Curriculum-Framework-for-Open-Set-SSL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Task Curriculum Framework for Open-Set SSL

This is the official PyTorch implementation of Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning.

architecture

Requirements

  • Python 3.7
  • PyTorch 1.1.0
  • torchvision 0.3.0
  • tensorboardX
  • progress
  • matplotlib
  • numpy
  • scikit-learn
  • scikit-image

Preparation

Download out-of-distributin datasets from Dropbox.

mkdir data
cd data
wget https://www.dropbox.com/s/7nj0sfunoqu9alu/OOD_data.zip
unzip OOD_data.zip
cd ..

Usage

Train baseline

Run

python run.py --gpu {GPU_ID} --n-labeled {#LABELED_SAMPLES} --data {OOD_DATASET} --method baseline

For example, train MixMatch with 250 labeled samples and TinyImageNet as OOD, please run:

python run.py --gpu 0 --n-labeled 250 --data TIN --method baseline

Trained model will be saved at runs_baseline.

Train proposed method

Run

python run.py --gpu {GPU_ID} --n-labeled {#LABELED_SAMPLES} --data {OOD_DATASET} --method proposed

For example, train proposed method with 250 labeled samples and TinyImageNet as OOD, please run:

python run.py --gpu 0 --n-labeled 250 --data TIN --method proposed

Trained model will be saved at runs_proposed.

For more details and parameters, please refer to --help option.

References

  • [1]: Qing Yu, Daiki Ikami, Go Irie and Kiyoharu Aizawa. "Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning", in ECCV, 2020.

About

Code for "Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages