This is an unofficial pytorch implementation of Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers.
- Python 3.7+
- PyTorch 1.10.2
- torchvision 0.11.3
- progress
- matplotlib
- numpy
Download five out-of-distributin datasets provided by ODIN:
Here is an example code of downloading Tiny-ImageNet (crop) dataset. In the root directory, run
mkdir data
cd data
wget https://www.dropbox.com/s/avgm2u562itwpkl/Imagenet.tar.gz
tar -xvzf Imagenet.tar.gz
cd ..
We provide download links of four types of pre-trained models.
- DenseNet-BC trained on CIFAR-10
- DenseNet-BC trained on CIFAR-100
- Wide ResNet trained on CIFAR-10
- Wide ResNet trained on CIFAR-100
Each type of models contains 5 models for 5-fold. Here is an example code of downloading DenseNet-BC trained on CIFAR-10. In the root directory, run
mkdir checkpoints
cd checkpoints
wget https://www.dropbox.com/s/mo2xay9rpfk8emu/cifar10_dense.tar.gz
tar -xvzf cifar10_dense.tar.gz
cd ..
Train DenseNet on the first fold of CIFAR-10.
python train.py -c checkpoints/cifar10_fold_1_dense_checkpoint --fold 1
Trained model will be saved at checkpoints/cifar10_fold_1_dense_checkpoint
.
python train_all.py
This script will train models of DenseNet/WideResNet on 5-fold CIFAR-10/100 which results in 20 models.
Trained model will be saved at checkpoints
.
Use 5-fold ensemble and ODIN to detect OOD samples. For example, to test DenseNet-BC trained on CIFAR-10 where TinyImageNet (crop) is the out-of-distribution dataset, please run
python test.py --in-dataset cifar10 --out-dataset Imagenet --magnitud 0.002
The temperature is set as 1000, and perturbation magnitude is set as 0.002.
Note: Please choose arguments according to the following.
-
args.in_dataset: the arguments of in-distribution datasets are shown as follows
In-Distribution Datasets args.in_dataset CIFAR-10 cifar10 CIFAR-100 cifar100 -
args.out_dataset: the arguments of out-of-distribution datasets are shown as follows
Out-of-Distribution Datasets args.out_dataset Tiny-ImageNet (crop) Imagenet Tiny-ImageNet (resize) Imagenet_resize LSUN (crop) LSUN LSUN (resize) LSUN_resize iSUN iSUN -
args.magnitude: the noise magnitude can be found below. You can use these values to reproduce the retults. Please notice that these values are not optimal .
Out-of-Distribution Datasets DenseNet on CIFAR-10 DenseNet on CIFAR-100 WideResNet on CIFAR-10 WideResNet on CIFAR-100 Tiny-ImageNet (crop) 0.002 0.002 0.003 0.002 Tiny-ImageNet (resize) 0.002 0.002 0.003 0.002 LSUN (crop) 0.002 0.003 0.001 0.002 LSUN (resize) 0.002 0.003 0.002 0.002 -
args.wide: the arguments of network choices are shown as follows
Nerual Network Models args.wide DenseNet False WideResNet True -
args.temperature: temperature is set to 1000 in all cases.
All values are percentages. ↑ indicates larger value is better, and ↓ indicates lower value is better. Each value cell is in "Paper/Our Implementation" format.
OOD Dataset | FPR at 95% TPR ↓ | Detection Error ↓ | AUROC ↑ | AUPR In ↑ | AUPR Out ↑ |
---|---|---|---|---|---|
Tiny-ImageNet (crop) | 1.23 / 1.48 | 2.63 / 2.79 | 99.65 / 99.66 | 99.68 / 99.67 | 99.64 / 99.66 |
Tiny-ImageNet (resize) | 2.93 / 2.58 | 3.84 / 3.63 | 99.34 / 99.45 | 99.37 / 99.48 | 99.32 / 99.46 |
LSUN (crop) | 3.42 / 3.70 | 4.12 / 4.32 | 99.25 / 99.27 | 99.29 / 99.32 | 99.24 / 99.26 |
LSUN (resize) | 0.77 / 1.58 | 2.1 / 2.69 | 99.75 / 99.67 | 99.77 / 99.68 | 99.73 / 99.68 |
OOD Dataset | FPR at 95% TPR ↓ | Detection Error ↓ | AUROC ↑ | AUPR In ↑ | AUPR Out ↑ |
---|---|---|---|---|---|
Tiny-ImageNet (crop) | 8.29 / 4.78 | 6.27 / 4.86 | 98.43 / 99.00 | 98.58 / 99.05 | 98.3 / 99.00 |
Tiny-ImageNet (resize) | 20.52 / 12.09 | 9.98 / 7.63 | 96.27 / 97.80 | 96.66 / 98.01 | 95.82 / 97.66 |
LSUN (crop) | 14.69 / 11.67 | 8.46 / 7.58 | 97.37 / 97.87 | 97.62 / 98.00 | 97.18 / 97.81 |
LSUN (resize) | 16.23 / 9.30 | 8.77 / 6.44 | 97.03 / 98.21 | 97.37 / 98.42 | 96.6 / 97.96 |
OOD Dataset | FPR at 95% TPR ↓ | Detection Error ↓ | AUROC ↑ | AUPR In ↑ | AUPR Out ↑ |
---|---|---|---|---|---|
Tiny-ImageNet (crop) | 0.82 / 2.08 | 2.24 / 3.48 | 99.75 / 99.55 | 99.77 / 99.57 | 99.75 / 99.54 |
Tiny-ImageNet (resize) | 2.94 / 4.29 | 3.83 / 4.62 | 99.36 / 99.15 | 99.4 / 99.17 | 99.36 / 99.17 |
LSUN (crop) | 1.93 / 4.65 | 3.24 / 4.71 | 99.55 / 99.07 | 99.57 / 99.17 | 99.55 / 99.02 |
LSUN (resize) | 0.88 / 3.25 | 2.52 / 3.92 | 99.7 / 99.39 | 99.72 / 99.37 | 99.68 / 99.43 |
OOD Dataset | FPR at 95% TPR ↓ | Detection Error ↓ | AUROC ↑ | AUPR In ↑ | AUPR Out ↑ |
---|---|---|---|---|---|
Tiny-ImageNet (crop) | 9.17 / 8.75 | 6.67 / 6.51 | 98.22 / 98.30 | 98.39 / 98.48 | 98.07 / 98.11 |
Tiny-ImageNet (resize) | 24.53 / 21.09 | 11.64 / 10.00 | 95.18 / 96.13 | 95.5 / 96.63 | 94.78 / 95.27 |
LSUN (crop) | 14.22 / 15.55 | 8.2 / 8.51 | 97.38 / 97.25 | 97.62 / 97.49 | 97.16 / 97.09 |
LSUN (resize) | 16.53 / 15.16 | 9.14 / 7.95 | 96.77 / 97.19 | 97.03 / 97.64 | 96.41 / 96.35 |
- [1]: A. Vyas, N. Jammalamadaka and et al. "Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers", in ECCV, 2018.
- [2]: S. Liang, Y. Li and R. Srikant. "Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks", in ICLR, 2018.