Skip to content

Code for "Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers"

Notifications You must be signed in to change notification settings

YU1ut/Ensemble-of-Leave-out-Classifiers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ensemble of Self Supervised Leave-out Classifiers

This is an unofficial pytorch implementation of Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers.

Requirements

  • Python 3.7+
  • PyTorch 1.10.2
  • torchvision 0.11.3
  • progress
  • matplotlib
  • numpy

Preparation

Download five out-of-distributin datasets provided by ODIN:

Here is an example code of downloading Tiny-ImageNet (crop) dataset. In the root directory, run

mkdir data
cd data
wget https://www.dropbox.com/s/avgm2u562itwpkl/Imagenet.tar.gz
tar -xvzf Imagenet.tar.gz
cd ..

Usage

Pre-trained Models

We provide download links of four types of pre-trained models.

Each type of models contains 5 models for 5-fold. Here is an example code of downloading DenseNet-BC trained on CIFAR-10. In the root directory, run

mkdir checkpoints
cd checkpoints
wget https://www.dropbox.com/s/mo2xay9rpfk8emu/cifar10_dense.tar.gz
tar -xvzf cifar10_dense.tar.gz
cd ..

Train single model (Optional)

Train DenseNet on the first fold of CIFAR-10.

python train.py -c checkpoints/cifar10_fold_1_dense_checkpoint --fold 1

Trained model will be saved at checkpoints/cifar10_fold_1_dense_checkpoint.

Train all models (Optional)

python train_all.py

This script will train models of DenseNet/WideResNet on 5-fold CIFAR-10/100 which results in 20 models. Trained model will be saved at checkpoints.

Test

Use 5-fold ensemble and ODIN to detect OOD samples. For example, to test DenseNet-BC trained on CIFAR-10 where TinyImageNet (crop) is the out-of-distribution dataset, please run

python test.py --in-dataset cifar10 --out-dataset Imagenet --magnitud 0.002

The temperature is set as 1000, and perturbation magnitude is set as 0.002.

Note: Please choose arguments according to the following.

args

  • args.in_dataset: the arguments of in-distribution datasets are shown as follows

    In-Distribution Datasets args.in_dataset
    CIFAR-10 cifar10
    CIFAR-100 cifar100
  • args.out_dataset: the arguments of out-of-distribution datasets are shown as follows

    Out-of-Distribution Datasets args.out_dataset
    Tiny-ImageNet (crop) Imagenet
    Tiny-ImageNet (resize) Imagenet_resize
    LSUN (crop) LSUN
    LSUN (resize) LSUN_resize
    iSUN iSUN
  • args.magnitude: the noise magnitude can be found below. You can use these values to reproduce the retults. Please notice that these values are not optimal .

    Out-of-Distribution Datasets DenseNet on CIFAR-10 DenseNet on CIFAR-100 WideResNet on CIFAR-10 WideResNet on CIFAR-100
    Tiny-ImageNet (crop) 0.002 0.002 0.003 0.002
    Tiny-ImageNet (resize) 0.002 0.002 0.003 0.002
    LSUN (crop) 0.002 0.003 0.001 0.002
    LSUN (resize) 0.002 0.003 0.002 0.002
  • args.wide: the arguments of network choices are shown as follows

    Nerual Network Models args.wide
    DenseNet False
    WideResNet True
  • args.temperature: temperature is set to 1000 in all cases.

Results

All values are percentages. ↑ indicates larger value is better, and ↓ indicates lower value is better. Each value cell is in "Paper/Our Implementation" format.

DenseNet on CIFAR-10

OOD Dataset FPR at 95% TPR ↓ Detection Error ↓ AUROC ↑ AUPR In ↑ AUPR Out ↑
Tiny-ImageNet (crop) 1.23 / 1.48 2.63 / 2.79 99.65 / 99.66 99.68 / 99.67 99.64 / 99.66
Tiny-ImageNet (resize) 2.93 / 2.58 3.84 / 3.63 99.34 / 99.45 99.37 / 99.48 99.32 / 99.46
LSUN (crop) 3.42 / 3.70 4.12 / 4.32 99.25 / 99.27 99.29 / 99.32 99.24 / 99.26
LSUN (resize) 0.77 / 1.58 2.1 / 2.69 99.75 / 99.67 99.77 / 99.68 99.73 / 99.68

DenseNet on CIFAR-100

OOD Dataset FPR at 95% TPR ↓ Detection Error ↓ AUROC ↑ AUPR In ↑ AUPR Out ↑
Tiny-ImageNet (crop) 8.29 / 4.78 6.27 / 4.86 98.43 / 99.00 98.58 / 99.05 98.3 / 99.00
Tiny-ImageNet (resize) 20.52 / 12.09 9.98 / 7.63 96.27 / 97.80 96.66 / 98.01 95.82 / 97.66
LSUN (crop) 14.69 / 11.67 8.46 / 7.58 97.37 / 97.87 97.62 / 98.00 97.18 / 97.81
LSUN (resize) 16.23 / 9.30 8.77 / 6.44 97.03 / 98.21 97.37 / 98.42 96.6 / 97.96

WideResNet on CIFAR-10

OOD Dataset FPR at 95% TPR ↓ Detection Error ↓ AUROC ↑ AUPR In ↑ AUPR Out ↑
Tiny-ImageNet (crop) 0.82 / 2.08 2.24 / 3.48 99.75 / 99.55 99.77 / 99.57 99.75 / 99.54
Tiny-ImageNet (resize) 2.94 / 4.29 3.83 / 4.62 99.36 / 99.15 99.4 / 99.17 99.36 / 99.17
LSUN (crop) 1.93 / 4.65 3.24 / 4.71 99.55 / 99.07 99.57 / 99.17 99.55 / 99.02
LSUN (resize) 0.88 / 3.25 2.52 / 3.92 99.7 / 99.39 99.72 / 99.37 99.68 / 99.43

WideResNet on CIFAR-100

OOD Dataset FPR at 95% TPR ↓ Detection Error ↓ AUROC ↑ AUPR In ↑ AUPR Out ↑
Tiny-ImageNet (crop) 9.17 / 8.75 6.67 / 6.51 98.22 / 98.30 98.39 / 98.48 98.07 / 98.11
Tiny-ImageNet (resize) 24.53 / 21.09 11.64 / 10.00 95.18 / 96.13 95.5 / 96.63 94.78 / 95.27
LSUN (crop) 14.22 / 15.55 8.2 / 8.51 97.38 / 97.25 97.62 / 97.49 97.16 / 97.09
LSUN (resize) 16.53 / 15.16 9.14 / 7.95 96.77 / 97.19 97.03 / 97.64 96.41 / 96.35

References

  • [1]: A. Vyas, N. Jammalamadaka and et al. "Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers", in ECCV, 2018.
  • [2]: S. Liang, Y. Li and R. Srikant. "Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks", in ICLR, 2018.

About

Code for "Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages