Skip to content

YChienHung/PolypMix

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PolypMix

This repo is the official implementation of "PolypMixNet: Enhancing semi-supervised polyp segmentation with polyp-aware augmentation" by Xiao Jia, et al.

Introduction

teaser

In this paper, we present a novel polyp-aware augmentation-based semi-supervised framework, PolypMixNet, with dual-level consistency regularization for polyp segmentation when there is limited annotated data but sufficient unlabeled data available.

Our key idea of PolypMix is to mix two unlabeled images by sampling more on polyp-like pixels and less on background-like pixels based on network predictions.

Running

Environment

name version
GPU NVIDIA GeForce RTX 3090
System Ubuntu 20.04
Python 3.8.18
Pytorch 2.0.1

Data

The dataset should be organized as:

dataset_root
├─ kvasir_SEG
│  ├── Train
│  │   ├── images
│  │   └── masks
│  ├── Valid
│  │   ├── images
│  │   └── masks
│  └── Test
│      ├── images
│      └── masks
├─ CVC_300
│  ├── ...
├─ CVC_ClinicDB
│  ├── ...
├─ ...

There are same file names in images and masks folders.

Training

Train kvasir_SEG + PolypMix + GPU0 + use 90 labeled samples + shuffle dataset:

python train_model.py --root <PATH_TO_DATASET_ROOT> --checkpoints <PATH_TO_CHECKPOINTS> --gpu_id 0 --dataset kvasir_SEG --method PolypMix --label_mode number --labeled_num 90 --shuffle True --suffix number --expID 8888

Train kvasir_SEG + PolypMix + GPU0 + use 15 percentage labeled samples + shuffle dataset:

python train_model.py --root <PATH_TO_DATASET_ROOT> --checkpoints <PATH_TO_CHECKPOINTS> --gpu_id 0 --dataset kvasir_SEG --method PolypMix --label_mode percentage --labeled_perc 15 --shuffle True --suffix percentage --expID 8888

Addition, if you want to use cpu training model, just add --use_gpu False

Testing

Test kvasir_SEG dataset:

python test_model.py --root <PATH_TO_DATASET_ROOT> --checkpoints <PATH_TO_CHECKPOINTS> --dataset kvasir_SEG  --suffix number

Then, you will find predict ground truth images in a folder (e.g. kvasir_SEG_number/002_GroundTruth/exp8888). And, you will find evaluation in a text file (e.g. kvasir_SEG_number/003_Evaluation/kvasir_SEG_eval_exp8888.txt).

Test CVC_300 with pretrained model based on kvasir_SEG:

python test_model.py --root <PATH_TO_DATASET_ROOT> --checkpoints <PATH_TO_CHECKPOINTS> --dataset CVC_300 --select_checkpoint kvasir_SEG_percentage --suffix direct

kvasir_SEG_percentage is a folder in checkpoint folder, which is trained by kvasir_SEG dataset.

Reference Code

Name Link
MT https://github.com/CuriousAI/mean-teacher
UAMT https://github.com/yulequan/UA-MT
ICT https://github.com/vikasverma1077/ICT
ADVENT https://github.com/valeoai/ADVENT
ClassMix https://github.com/WilhelmT/ClassMix
URPC https://github.com/HiLab-git/SSL4MIS

Thanks for their work again.

Cite PolypMix

If you find this repository useful, please use the following BibTeX entry for citation.

@article{jia2024polypmixnet,
  title = {{{PolypMixNet}}: {{Enhancing}} Semi-Supervised Polyp Segmentation with Polyp-Aware Augmentation},
  author = {Jia, Xiao and Shen, Yutian and Yang, Jianhong and Song, Ran and Zhang, Wei and Meng, Max Q. -H. and Liao, Joseph C. and Xing, Lei},
  year = {2024},
  journal = {Computers in Biology and Medicine},
  pages = {108006},
  doi = {10.1016/j.compbiomed.2024.108006}
}

Star History

Star History Chart

License

This project is released under the MIT license. Please see the LICENSE file for more information.

About

Official PyTorch implementation of PolypMix

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages