Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README.md #13

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 19 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@ The feature-matching based registration algorithms generally follow a two-stage
- PREDATOR: Registration of 3D Point Clouds with Low Overlap. arxiv'2020 [[paper]](https://arxiv.org/pdf/2011.13005.pdf) [[code]](https://github.com/ShengyuH/OverlapPredator)
- SC3K: Self-supervised and Coherent 3D Keypoints Estimation from Rotated, Noisy, and Decimated Point Cloud Data. ICCV'2023 [[paper]](https://openaccess.thecvf.com/content/ICCV2023/papers/Zohaib_SC3K_Self-supervised_and_Coherent_3D_Keypoints_Estimation_from_Rotated_Noisy_ICCV_2023_paper.pdf) [[code]](https://github.com/IIT-PAVIS/SC3K)


Survey:
- Performance Evaluation of 3D Keypoint Detectors. IJCV'2013 [[paper]](https://doi.org/10.1007/s11263-012-0545-4)

Expand Down Expand Up @@ -97,11 +96,17 @@ Survey:
- Geometric Transformer for Fast and Robust Point Cloud Registration. CVPR'2022 [[paper]](https://arxiv.org/abs/2202.06688) [[code]](https://github.com/qinzheng93/GeoTransformer)
- ImLoveNet: Misaligned Image-supported Registration Network for Low-overlap Point Cloud Pairs. SIGGRAPH'2022 [[paper]](https://arxiv.org/pdf/2207.00826.pdf)
- Learning to Register Unbalanced Point Pairs. arxiv'2022 [[paper]](https://arxiv.org/abs/2207.04221)
- RoReg: Pairwise Point Cloud Registration with Oriented Descriptors and Local Rotations. TPAMI'2023 [[paper]](https://ieeexplore.ieee.org/document/10044259) [[code]](https://github.com/HpWang-whu/RoReg)
- BUFFER: Balancing Accuracy, Efficiency, and Generalizability in Point Cloud Registration. CVPR'2023 [[paper]](https://openaccess.thecvf.com/content/CVPR2023/html/Ao_BUFFER_Balancing_Accuracy_Efficiency_and_Generalizability_in_Point_Cloud_Registration_CVPR_2023_paper.html) [[code]](https://github.com/The-Learning-And-Vision-Atelier-LAVA/BUFFER)
- Density-invariant Features for Distant Point Cloud Registration. ICCV'2023 [[paper]](https://arxiv.org/pdf/2307.09788) [[code]](https://github.com/liuQuan98/GCL)
- RIGA: Rotation-Invariant and Globally-Aware Descriptors for Point Cloud Registration. TPAMI'2024 [[paper]](https://arxiv.org/pdf/2209.13252)


Survey:
- A Comprehensive Performance Evaluation of 3D Local Feature Descriptors. IJCV'2015 [[paper]](https://link.springer.com/article/10.1007/s11263-015-0824-y)
- Evaluating Local Geometric Feature Representations for 3D Rigid Data Matching. ICIP'2019 [[paper]](https://arxiv.org/abs/1907.00233)
- A Comprehensive Survey and Taxonomy on Point Cloud Registration Based on
Deep Learning. IJCAI' 2024 [[paper]](https://arxiv.org/pdf/2404.13830v1)

#### Outlier Rejection

Expand All @@ -115,7 +120,7 @@ Survey:
- In Search of Inliers: 3D Correspondence by Local and Global Voting. CVPR'2014 [[paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Buch_In_Search_of_2014_CVPR_paper.pdf)
- FGR: Fast Global Registration. ECCV'2016 [[paper]](https://vladlen.info/publications/fast-global-registration/) [[code]](https://github.com/intel-isl/FastGlobalRegistration)
- Ranking 3D Feature Correspondences Via Consistency Voting. PRL'2019 [[paper]](https://doi.org/10.1016/j.patrec.2018.11.018)
- An Accurate and Efficient Voting Scheme for a Maximally All-Inlier 3D Correspondence Set. TPAMI'2020 [[paper]](https://ieeexplore.ieee.org/ielx7/34/4359286/08955806.pdf)
- An Accurate and Efficient Voting Scheme for a Maximally All-Inlier 3D Correspondence Set. TPAMI'2020 [[paper]](https://ieeexplore.ieee.org/ielx7/34/4359286/08955806.pdf)
- GORE: Guaranteed Outlier Removal for Point Cloud Registration with Correspondences. TPAMI'2018 [[paper]](https://arxiv.org/abs/1711.10209) [[code]](https://cs.adelaide.edu.au/~aparra/project/gore/)
- A Polynomial-time Solution for Robust Registration with Extreme Outlier Rates. RSS'2019 [[paper]](https://arxiv.org/abs/1903.08588)
- Graduated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers to Global Outlier Rejection. ICRA'2020 [[paper]](https://arxiv.org/abs/1909.08605)
Expand All @@ -127,6 +132,8 @@ Survey:
- Fast Semantic-Assisted Outlier Removal for Large-scale Point Cloud Registration. arxiv'2022 [[paper]](https://arxiv.org/pdf/2202.10579.pdf)
- A Single Correspondence Is Enough: Robust Global Registration to Avoid Degeneracy in Urban Environments. ICRA'2022 [[paper]](https://arxiv.org/pdf/2203.06612.pdf) [[code]](https://github.com/url-kaist/quatro)
- SC^2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration. CVPR'2022 [[paper]](https://arxiv.org/abs/2203.14453) [[code]](https://github.com/ZhiChen902/SC2-PCR)
- FastMAC: Stochastic Spectral Sampling of Correspondence Graph. CVPR'2024 [[paper]](https://arxiv.org/abs/2403.08770) [[code]](https://github.com/Forrest-110/FastMAC)
- Scalable 3D Registration via Truncated Entry-wise Absolute Residuals. CVPR'2024 [[paper]](https://openaccess.thecvf.com/content/CVPR2024/papers/Huang_Scalable_3D_Registration_via_Truncated_Entry-wise_Absolute_Residuals_CVPR_2024_paper.pdf) [[code]](https://github.com/tyhuang98/TEAR-release)

Learning based (including 2D outlier rejection methods)
- Learning to Find Good Correspondences. CVPR'2018 [[paper]](https://arxiv.org/abs/1711.05971) [[code]](https://github.com/vcg-uvic/learned-correspondence-release)
Expand All @@ -147,6 +154,9 @@ Learning based (including 2D outlier rejection methods)
- COTReg: Coupled Optimal Transport based Point Cloud Registration. arxiv'2021 [[paper]](https://arxiv.org/pdf/2112.14381.pdf)
- DetarNet: Decoupling Translation and Rotation by Siamese Network for Point Cloud Registration. AAAI'2022 [[paper]](https://arxiv.org/pdf/2112.14059.pdf) [[code]](https://github.com/ZhiChen902/DetarNet)
- Multi-instance Point Cloud Registration by Efficient Correspondence Clustering. CVPR'2022 [[paper]](https://arxiv.org/pdf/2111.14582.pdf) [[code]](https://github.com/SJTU-ViSYS/multi-instant-reg)
- SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation. NeurIPS'2023 [[paper]](https://arxiv.org/pdf/2310.17359) [[code]](https://github.com/Jiang-HB/DiffusionReg)
- Robust Outlier Rejection for 3D Registration with Variational Bayes. CVPR'2023 [[paper]](https://arxiv.org/pdf/2304.01514v1) [[code]](https://github.com/Jiang-HB/VBReg)
- RegFormer: An Efficient Projection-Aware Transformer Network for Large-Scale Point Cloud Registration. ICCV'2023 [[paper]](https://arxiv.org/pdf/2303.12384) [[code]](https://github.com/IRMVLab/RegFormer)

Survey
- A Performance Evaluation of Correspondence Grouping Methods for 3D Rigid Data Matching. TPAMI'2019 [[paper]](http://arxiv.org/pdf/1907.02890)
Expand All @@ -170,6 +180,8 @@ Survey
- Pairwise Point Cloud Registration Using Graph Matching and Rotation-invariant Features. arxiv'2021 [[paper]](https://arxiv.org/pdf/2105.02151.pdf)
- Pyramid Semantic Graph-based Global Point Cloud Registration with Low Overlap. IROS'2023 [[paper]](https://arxiv.org/abs/2307.12116) [[code]](https://github.com/HKUST-Aerial-Robotics/Pagor)
- G3Reg: Pyramid Graph-based Global Registration using Gaussian Ellipsoid Model. arxiv'2023 [[paper]](https://arxiv.org/abs/2308.11573) [[code]](https://github.com/HKUST-Aerial-Robotics/G3Reg)
- SGHR: Robust Multiview Point Cloud Registration with Reliable Pose Graph Initialization and History Reweighting. CVPR'2023 [[paper]](https://arxiv.org/abs/2304.00467) [[code]](https://github.com/WHU-USI3DV/SGHR)
- 3D Registration with Maximal Cliques [[paper]](https://arxiv.org/pdf/2305.10854) [[code]](https://github.com/zhangxy0517/3D-Registration-with-Maximal-Cliques)


### End-to-End
Expand Down Expand Up @@ -207,6 +219,7 @@ Some papers perform end-to-end registration by directly predicting a rigid trans
- VRNet: Learning the Rectified Virtual Corresponding Points for 3D Point Cloud Registration. arxiv'2022 [[paper]](https://arxiv.org/pdf/2203.13241.pdf)
- REGTR: End-to-end Point Cloud Correspondences with Transformers. CVPR'2022 [[paper]](https://openaccess.thecvf.com/content/CVPR2022/papers/Yew_REGTR_End-to-End_Point_Cloud_Correspondences_With_Transformers_CVPR_2022_paper.pdf) [[code]](https://github.com/yewzijian/RegTR)
- UTOPIC: Uncertainty-aware Overlap Prediction Network for Partial Point Cloud Registration. CGF'2022 [[paper]](https://arxiv.org/pdf/2208.02712.pdf) [[code]](https://github.com/ZhileiChen99/UTOPIC)
- Q-REG: End-to-End Trainable Point Cloud Registration with Surface Curvature. 3DV' 2024 [[paper]](https://arxiv.org/pdf/2309.16023)

### Randomized

Expand Down Expand Up @@ -247,6 +260,10 @@ Some papers perform end-to-end registration by directly predicting a rigid trans
- Multiway Non-rigid Point Cloud Registration via Learned Functional Map Synchronization. arxiv'2021 [[paper]](https://arxiv.org/abs/2111.12878)
- DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration. BMVC'2021 [[paper]](https://arxiv.org/abs/2112.09938)
- Deterministic Point Cloud Registration via Novel Transformation Decomposition. CVPR'2022 [[paper]](https://openaccess.thecvf.com/content/CVPR2022/papers/Chen_Deterministic_Point_Cloud_Registration_via_Novel_Transformation_Decomposition_CVPR_2022_paper.pdf)
-Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration. CVPR'2023 [[paper]](https://arxiv.org/pdf/2303.13290v1)
- Rethinking Point Cloud Registration as Masking and Reconstruction. ICCV'2023 [[paper]](https://openaccess.thecvf.com/content/ICCV2023/html/Chen_Rethinking_Point_Cloud_Registration_as_Masking_and_Reconstruction_ICCV_2023_paper.html) [[code]](https://github.com/cguangyan-bit/mra)
- Learning Instance-Aware Correspondences for Robust Multi-Instance Point Cloud Registration in Cluttered Scenes. CVPR'2024 [[paper]](https://arxiv.org/abs/2404.04557)
- Extend Your Own Correspondences: Unsupervised Distant Point Cloud Registration by Progressive Distance Extension. CVPR'2024 [[paper]](https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Extend_Your_Own_Correspondences_Unsupervised_Distant_Point_Cloud_Registration_by_CVPR_2024_paper.html) [[code]](https://github.com/liuQuan98/EYOC)


## Fine Registration
Expand Down