-
-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0b37219
commit a44a7fe
Showing
1 changed file
with
191 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
> # Copyright (C) 1997-2009 The R Core Team | ||
> | ||
> ### Helical Valley Function | ||
> ### Page 362 Dennis + Schnabel | ||
> | ||
> require(stats); require(graphics) | ||
|
||
> theta <- function(x1,x2) (atan(x2/x1) + (if(x1 <= 0) pi else 0))/ (2*pi) | ||
|
||
> ## but this is easier : | ||
> theta <- function(x1,x2) atan2(x2, x1)/(2*pi) | ||
|
||
> f <- function(x) { | ||
+ f1 <- 10*(x[3] - 10*theta(x[1],x[2])) | ||
+ f2 <- 10*(sqrt(x[1]^2+x[2]^2)-1) | ||
+ f3 <- x[3] | ||
+ return(f1^2+f2^2+f3^2) | ||
+ } | ||
|
||
> ## explore surface {at x3 = 0} | ||
> x <- seq(-1, 2, length.out=50) | ||
|
||
> y <- seq(-1, 1, length.out=50) | ||
|
||
> z <- apply(as.matrix(expand.grid(x, y)), 1, function(x) f(c(x, 0))) | ||
|
||
> contour(x, y, matrix(log10(z), 50, 50)) | ||
Hit <Return> to see next plot: | ||
|
||
> str(nlm.f <- nlm(f, c(-1,0,0), hessian = TRUE)) | ||
List of 6 | ||
$ minimum : num 1.24e-14 | ||
$ estimate : num [1:3] 1.00 3.07e-09 -6.06e-09 | ||
$ gradient : num [1:3] -3.76e-07 3.49e-06 -2.20e-06 | ||
$ hessian : num [1:3, 1:3] 2.00e+02 -4.07e-02 9.77e-07 -4.07e-02 5.07e+02 ... | ||
$ code : int 2 | ||
$ iterations: int 27 | ||
|
||
> points(rbind(nlm.f$estim[1:2]), col = "red", pch = 20) | ||
|
||
> ### the Rosenbrock banana valley function | ||
> | ||
> fR <- function(x) | ||
+ { | ||
+ x1 <- x[1]; x2 <- x[2] | ||
+ 100*(x2 - x1*x1)^2 + (1-x1)^2 | ||
+ } | ||
|
||
> ## explore surface | ||
> fx <- function(x) | ||
+ { ## `vectorized' version of fR() | ||
+ x1 <- x[,1]; x2 <- x[,2] | ||
+ 100*(x2 - x1*x1)^2 + (1-x1)^2 | ||
+ } | ||
|
||
> x <- seq(-2, 2, length.out=100) | ||
|
||
> y <- seq(-0.5, 1.5, length.out=100) | ||
|
||
> z <- fx(expand.grid(x, y)) | ||
|
||
> op <- par(mfrow = c(2,1), mar = 0.1 + c(3,3,0,0)) | ||
|
||
> contour(x, y, matrix(log10(z), length(x))) | ||
Hit <Return> to see next plot: | ||
|
||
> str(nlm.f2 <- nlm(fR, c(-1.2, 1), hessian = TRUE)) | ||
List of 6 | ||
$ minimum : num 3.97e-12 | ||
$ estimate : num [1:2] 1 1 | ||
$ gradient : num [1:2] -6.54e-07 3.34e-07 | ||
$ hessian : num [1:2, 1:2] 802 -400 -400 200 | ||
$ code : int 1 | ||
$ iterations: int 23 | ||
|
||
> points(rbind(nlm.f2$estim[1:2]), col = "red", pch = 20) | ||
|
||
> ## Zoom in : | ||
> rect(0.9, 0.9, 1.1, 1.1, border = "orange", lwd = 2) | ||
|
||
> x <- y <- seq(0.9, 1.1, length.out=100) | ||
|
||
> z <- fx(expand.grid(x, y)) | ||
|
||
> contour(x, y, matrix(log10(z), length(x))) | ||
|
||
> mtext("zoomed in");box(col = "orange") | ||
|
||
> points(rbind(nlm.f2$estim[1:2]), col = "red", pch = 20) | ||
|
||
> par(op) | ||
|
||
> fg <- function(x) | ||
+ { | ||
+ gr <- function(x1, x2) { | ||
+ c(-400*x1*(x2 - x1*x1)-2*(1-x1), 200*(x2 - x1*x1)) | ||
+ } | ||
+ x1 <- x[1]; x2 <- x[2] | ||
+ res<- 100*(x2 - x1*x1)^2 + (1-x1)^2 | ||
+ attr(res, "gradient") <- gr(x1, x2) | ||
+ return(res) | ||
+ } | ||
|
||
> nlm(fg, c(-1.2, 1), hessian = TRUE) | ||
$minimum | ||
[1] 1.182096e-20 | ||
|
||
$estimate | ||
[1] 1 1 | ||
|
||
$gradient | ||
[1] 2.583521e-09 -1.201128e-09 | ||
|
||
$hessian | ||
[,1] [,2] | ||
[1,] 802.24 -400.02 | ||
[2,] -400.02 200.00 | ||
|
||
$code | ||
[1] 1 | ||
|
||
$iterations | ||
[1] 24 | ||
|
||
|
||
> ## or use deriv to find the derivatives | ||
> | ||
> fd <- deriv(~ 100*(x2 - x1*x1)^2 + (1-x1)^2, c("x1", "x2")) | ||
|
||
> fdd <- function(x1, x2) {} | ||
|
||
> body(fdd) <- fd | ||
|
||
> nlm(function(x) fdd(x[1], x[2]), c(-1.2,1), hessian = TRUE) | ||
$minimum | ||
[1] 1.182096e-20 | ||
|
||
$estimate | ||
[1] 1 1 | ||
|
||
$gradient | ||
[1] 2.583521e-09 -1.201128e-09 | ||
|
||
$hessian | ||
[,1] [,2] | ||
[1,] 802.24 -400.02 | ||
[2,] -400.02 200.00 | ||
|
||
$code | ||
[1] 1 | ||
|
||
$iterations | ||
[1] 24 | ||
|
||
|
||
> fgh <- function(x) | ||
+ { | ||
+ gr <- function(x1, x2) | ||
+ c(-400*x1*(x2 - x1*x1) - 2*(1-x1), 200*(x2 - x1*x1)) | ||
+ h <- function(x1, x2) { | ||
+ a11 <- 2 - 400*x2 + 1200*x1*x1 | ||
+ a21 <- -400*x1 | ||
+ matrix(c(a11, a21, a21, 200), 2, 2) | ||
+ } | ||
+ x1 <- x[1]; x2 <- x[2] | ||
+ res<- 100*(x2 - x1*x1)^2 + (1-x1)^2 | ||
+ attr(res, "gradient") <- gr(x1, x2) | ||
+ attr(res, "hessian") <- h(x1, x2) | ||
+ return(res) | ||
+ } | ||
|
||
> nlm(fgh, c(-1.2,1), hessian = TRUE) | ||
$minimum | ||
[1] 2.829175 | ||
|
||
$estimate | ||
[1] -0.6786981 0.4711891 | ||
|
||
$gradient | ||
[1] -0.4911201 2.1115987 | ||
|
||
$hessian | ||
[,1] [,2] | ||
[1,] 366.1188 271.4593 | ||
[2,] 271.4593 200.0000 | ||
|
||
$code | ||
[1] 4 | ||
|
||
$iterations | ||
[1] 100 |