Releases: Westlake-AI/MogaNet
Releases · Westlake-AI/MogaNet
MogaNet-Pose-Estimation-Weights
A collection of log.json
and model.pth
for 2D human pose estimation experiments of MogaNet on COCO (download). You can also download all released files from Baidu Cloud (z8mf) at MogaNet/COCO_Pose
.
- We perform top-down pose estimation experiments based on with ImageNet-1K pre-trained MogaNet variants fine-tuning 210 epochs in MogaNet/pose_estimation. We also provide results of popular architectures (Swin, ConvNeXt, and Uniformer) for comparison.
MogaNet + Top-Down
Backbone |
Pretrain |
Input Size |
Params |
FLOPs |
Epoch |
AP |
AR |
Config |
Download |
MogaNet-XT |
ImageNet-1K |
256x192 |
5.6M |
1.84G |
210 |
72.1 |
77.7 |
config |
log / model |
MogaNet-XT |
ImageNet-1K |
384x288 |
5.6M |
4.15G |
210 |
74.7 |
79.9 |
config |
log / model |
MogaNet-T |
ImageNet-1K |
256x192 |
8.1M |
2.15G |
210 |
73.2 |
78.8 |
config |
log / model |
MogaNet-T |
ImageNet-1K |
384x288 |
8.1M |
4.85G |
210 |
75.7 |
80.9 |
config |
log / model |
MogaNet-S |
ImageNet-1K |
256x192 |
29.0M |
5.99G |
210 |
74.8 |
80.1 |
config |
log / model |
MogaNet-S |
ImageNet-1K |
384x288 |
29.0M |
13.48G |
210 |
76.4 |
81.4 |
config |
log / model |
MogaNet-B |
ImageNet-1K |
256x192 |
47.4M |
10.85G |
210 |
75.3 |
80.7 |
config |
log / model |
MogaNet-B |
ImageNet-1K |
384x288 |
47.4M |
24.42G |
210 |
77.3 |
82.2 |
config |
log / model |
MetaFormers + Top-Down
Read more
MogaNet-ADE20K-Segmentation-Weights
A collection of log.json
and model.pth
for semantic segmentation experiments of MogaNet on ADE20K (download). You can also download all released files from Baidu Cloud (z8mf) at MogaNet/ADE20K_Segmentation
.
- We perform semantic segmentation experiments based on Semantic FPN with ImageNet-1K pre-trained MogaNet variants fine-tuning 80K iterations in MogaNet/segmentation.
- We perform semantic segmentation experiments based on UperNet with ImageNet-1K pre-trained MogaNet variants fine-tuning 160K iterations in MogaNet/segmentation.
MogaNet + Semantic FPN
Method |
Backbone |
Pretrain |
Params |
FLOPs |
Iters |
mIoU |
mAcc |
Config |
Download |
Semantic FPN |
MogaNet-XT |
ImageNet-1K |
6.9M |
101.4G |
80K |
40.3 |
52.4 |
config |
log / model |
Semantic FPN |
MogaNet-T |
ImageNet-1K |
9.1M |
107.8G |
80K |
43.1 |
55.4 |
config |
log / model |
Semantic FPN |
MogaNet-S |
ImageNet-1K |
29.1M |
189.7G |
80K |
47.7 |
59.8 |
config |
log / model |
Semantic FPN |
MogaNet-B |
ImageNet-1K |
47.5M |
293.6G |
80K |
49.3 |
61.6 |
config |
log / model |
Semantic FPN |
MogaNet-L |
ImageNet-1K |
86.2M |
418.7G |
80K |
50.2 |
63.0 |
config |
log / model |
MogaNet + UperNet
Method |
Backbone |
Pretrain |
Params |
FLOPs |
Iters |
mIoU |
mAcc |
Config |
Download |
UperNet |
MogaNet-XT |
ImageNet-1K |
30.4M |
855.7G |
160K |
42.2 |
55.1 |
config |
log / model |
UperNet |
MogaNet-T |
ImageNet-1K |
33.1M |
862.4G |
160K |
43.7 |
57.1 |
config |
log / model |
UperNet |
MogaNet-S |
ImageNet-1K |
55.3M |
946.4G |
160K |
49.2 |
61.6 |
config |
log / model |
UperNet |
MogaNet-B |
ImageNet-1K |
73.7M |
1050.4G |
160K |
50.1 |
63.4 |
config |
log / model |
UperNet |
MogaNet-L |
ImageNet-1K |
113.2M |
1176.1G |
160K |
50.9 |
63.5 |
config |
log / model |
MogaNet-COCO-Detection-Weights
A collection of log.json
and model.pth
for object detection and instance segmentation experiments of MogaNet on COCO2017 (download). You can also download all files from Baidu Cloud (z8mf) at MogaNet/COCO_Detection
.
MogaNet + RetinaNet
Method |
Backbone |
Pretrain |
Params |
FLOPs |
Lr schd |
box mAP |
Config |
Download |
RetinaNet |
MogaNet-XT |
ImageNet-1K |
12.1M |
167.2G |
1x |
39.7 |
config |
log / model |
RetinaNet |
MogaNet-T |
ImageNet-1K |
14.4M |
173.4G |
1x |
41.4 |
config |
log / model |
RetinaNet |
MogaNet-S |
ImageNet-1K |
35.1M |
253.0G |
1x |
45.8 |
config |
log / model |
RetinaNet |
MogaNet-B |
ImageNet-1K |
53.5M |
354.5G |
1x |
47.7 |
config |
log / model |
RetinaNet |
MogaNet-L |
ImageNet-1K |
92.4M |
476.8G |
1x |
48.7 |
config |
log / model |
MogaNet + Mask R-CNN
Method |
Backbone |
Pretrain |
Params |
FLOPs |
Lr schd |
box mAP |
mask mAP |
Config |
Download |
Mask R-CNN |
MogaNet-XT |
ImageNet-1K |
22.8M |
185.4G |
1x |
40.7 |
37.6 |
config |
log / model |
Mask R-CNN |
MogaNet-T |
ImageNet-1K |
25.0M |
191.7G |
1x |
42.6 |
39.1 |
config |
log / model |
Mask R-CNN |
MogaNet-S |
ImageNet-1K |
45.0M |
271.6G |
1x |
46.6 |
42.2 |
config |
log / model |
Mask R-CNN |
MogaNet-B |
ImageNet-1K |
63.4M |
373.1G |
1x |
49.0 |
43.8 |
config |
log / model |
Mask R-CNN |
MogaNet-L |
ImageNet-1K |
102.1M |
495.3G |
1x |
49.4 |
44.2 |
config |
log / model |
Mask R-CNN |
MogaNet-T |
ImageNet-1K |
25.0M |
191.7G |
MS 3x |
45.3 |
40.7 |
config |
log / model |
Mask R-CNN |
MogaNet-S |
ImageNet-1K |
45.0M |
271.6G |
MS 3x |
48.5 |
43.1 |
config |
log / model |
Mask R-CNN |
MogaNet-B |
ImageNet-1K |
63.4M |
373.1G |
MS 3x |
50.3 |
44.4 |
config |
log / model |
Mask R-CNN |
MogaNet-L |
ImageNet-1K |
63.4M |
373.1G |
MS 3x |
50.6 |
44.6 |
config |
log / model |
MogaNet + Cascade Mask R-CNN
Method |
Backbone |
Pretrain |
Params |
FLOPs |
Lr schd |
box mAP |
mask mAP |
Config |
Download |
Cascade Mask R-CNN |
MogaNet-S |
ImageNet-1K |
77.9M |
405.4G |
MS 3x |
51.4 |
44.9 |
config |
log / model |
Cascade Mask R-CNN |
MogaNet-S |
ImageNet-1K |
82.8M |
750.2G |
GIOU+MS 3x |
51.7 |
45.1 |
config |
log / model |
Cascade Mask R-CNN |
MogaNet-B |
ImageNet-1K |
101.2M |
851.6G |
GIOU+MS 3x |
52.6 |
46.0 |
config |
log / model |
Cascade Mask R-CNN |
MogaNet-L |
ImageNet-1K |
139.9M |
973.8G |
GIOU+MS 3x |
53.3 |
46.1 |
config |
- |
MogaNet-ImageNet-Weights
A collection of args.yaml
, summary.csv
, and model.pth.tar
for image classification experiments of MogaNet on ImageNet-1K (download). You can download all files from Baidu Cloud: MogaNet (z8mf) at MogaNet/Classification_MogaNet
.
- We reproduce the results of MogaNet for 300-epoch training according to the DeiT setting on ImageNet-1K in TRAINING.md. Refer to OpenMixup for more image classification results.
- The best top-1 accuracy of image classification of 3 trials is reported for all experiments. Note that we report the classification accuracy of EMA weights for MogaNet-S, MogaNet-B, and MogaNet-L (please evaluate their EMA models).
- To evaluate the pre-trained weights, use
validate.py
with scripts for the classification performance.
Image Classification on ImageNet-1K