Skip to content

Commit

Permalink
Merge pull request #548 from WenjieDu/(test)add_segrnn_cases
Browse files Browse the repository at this point in the history
Add SegRNN testing cases
  • Loading branch information
WenjieDu authored Nov 25, 2024
2 parents 56f5b9b + e9282d2 commit 30b3f60
Showing 1 changed file with 117 additions and 0 deletions.
117 changes: 117 additions & 0 deletions tests/imputation/segrnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
"""
Test cases for SegRNN imputation model.
"""

# Created by Wenjie Du <[email protected]>
# License: BSD-3-Clause


import os.path
import unittest

import numpy as np
import pytest

from pypots.imputation import SegRNN
from pypots.optim import Adam
from pypots.utils.logging import logger
from pypots.utils.metrics import calc_mse
from tests.global_test_config import (
DATA,
EPOCHS,
DEVICE,
TRAIN_SET,
VAL_SET,
TEST_SET,
GENERAL_H5_TRAIN_SET_PATH,
GENERAL_H5_VAL_SET_PATH,
GENERAL_H5_TEST_SET_PATH,
RESULT_SAVING_DIR_FOR_IMPUTATION,
check_tb_and_model_checkpoints_existence,
)


class TestSegRNN(unittest.TestCase):
logger.info("Running tests for an imputation model SegRNN...")

# set the log and model saving path
saving_path = os.path.join(RESULT_SAVING_DIR_FOR_IMPUTATION, "SegRNN")
model_save_name = "saved_segrnn_model.pypots"

# initialize an Adam optimizer
optimizer = Adam(lr=0.001, weight_decay=1e-5)

# initialize a SegRNN model
segrnn = SegRNN(
DATA["n_steps"],
DATA["n_features"],
seg_len=4,
dropout=0,
epochs=EPOCHS,
saving_path=saving_path,
optimizer=optimizer,
device=DEVICE,
)

@pytest.mark.xdist_group(name="imputation-segrnn")
def test_0_fit(self):
self.segrnn.fit(TRAIN_SET, VAL_SET)

@pytest.mark.xdist_group(name="imputation-segrnn")
def test_1_impute(self):
imputation_results = self.segrnn.predict(TEST_SET)
assert not np.isnan(
imputation_results["imputation"]
).any(), "Output still has missing values after running impute()."

test_MSE = calc_mse(
imputation_results["imputation"],
DATA["test_X_ori"],
DATA["test_X_indicating_mask"],
)
logger.info(f"SegRNN test_MSE: {test_MSE}")

@pytest.mark.xdist_group(name="imputation-segrnn")
def test_2_parameters(self):
assert hasattr(self.segrnn, "model") and self.segrnn.model is not None

assert hasattr(self.segrnn, "optimizer") and self.segrnn.optimizer is not None

assert hasattr(self.segrnn, "best_loss")
self.assertNotEqual(self.segrnn.best_loss, float("inf"))

assert hasattr(self.segrnn, "best_model_dict") and self.segrnn.best_model_dict is not None

@pytest.mark.xdist_group(name="imputation-segrnn")
def test_3_saving_path(self):
# whether the root saving dir exists, which should be created by save_log_into_tb_file
assert os.path.exists(self.saving_path), f"file {self.saving_path} does not exist"

# check if the tensorboard file and model checkpoints exist
check_tb_and_model_checkpoints_existence(self.segrnn)

# save the trained model into file, and check if the path exists
saved_model_path = os.path.join(self.saving_path, self.model_save_name)
self.segrnn.save(saved_model_path)

# test loading the saved model, not necessary, but need to test
self.segrnn.load(saved_model_path)

@pytest.mark.xdist_group(name="imputation-segrnn")
def test_4_lazy_loading(self):
self.segrnn.fit(GENERAL_H5_TRAIN_SET_PATH, GENERAL_H5_VAL_SET_PATH)
imputation_results = self.segrnn.predict(GENERAL_H5_TEST_SET_PATH)
assert not np.isnan(
imputation_results["imputation"]
).any(), "Output still has missing values after running impute()."

test_MSE = calc_mse(
imputation_results["imputation"],
DATA["test_X_ori"],
DATA["test_X_indicating_mask"],
)
logger.info(f"Lazy-loading SegRNN test_MSE: {test_MSE}")


if __name__ == "__main__":
unittest.main()

0 comments on commit 30b3f60

Please sign in to comment.