Skip to content

面向中文领域的轻量文本匹配框架,集成文本匹配,文本蕴含,释义识别等领域的各个经典,STA模型

Notifications You must be signed in to change notification settings

WenRichard/Light_SimMatch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 

Repository files navigation

Light_SimMatch

面向中文领域的轻量文本匹配框架,集成文本匹配文本蕴含释义识别等领域的各个经典,STA模型

文本匹配模型

  • DSSM 【Learning Deep Structured Semantic Models for Web Search using Clickthrough Data,2013
  • ConvNet 【Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks,2015
  • QACNN 【Applying Deep Learning to Answer Selection: A Study And An Open Task,2015
  • APCNN 【Attentive Pooling Networks,2016
  • ABCNN 【ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs,2017
  • CAM 【A Compare-Aggregate Model for Matching Text Sequences,2017
  • ESIM 【Enhanced LSTM for Natural Language Inference,2017
  • BiMPM 【Bilateral Multi-Perspective Matching for Natural Language Sentences,2017
  • HCNN 【Modelling Domain Relationships for Transfer Learning on Retrieval-based Question Answering Systems,2017
  • HyperQA 【Hyperbolic Representation Learning for Fast and Efficient Neural Question Answering,2018
  • MAN 【Multihop Attention Networks for QA Matching,2018
  • DIIN 【Natural Language Inference Over Interaction Space,2018
  • DRCN 【Semantic Sentence Matching with Densely-connected Recurrent and Co-attentive Information,2018
  • TF 【Attention Is All You Need,2018
  • Bert 【BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,2018
  • Xlnet 【XLNet: Generalized Autoregressive Pretraining for Language Understanding,2019
  • RE2 【Simple and Effective Text Matching with Richer Alignment Features,2019
  • ERCNN 【Enhanced Recurrent Convolutional Neural Networks for Learning Sentence Similarity,CCL 2019
  • GTF 【Gaussian Transformer: A Lightweight Approach for Natural Language Inference,2019
  • MVMT 【Many vs. Many Query Matching with Hierarchical BERT and Transformer,NLPCC 2019
  • HAS 【Hashing based Answer Selection,2019
  • GGSA 【Gated Group Self-Atention for Answer Selection,2019
  • Comp-Clip-LM 【A Compare-Aggregate Model with Latent Clustering for Answer Selection,CIKM 2019
  • BERT+GSAMN 【A Gated Self-attention Memory Network for Answer Selection,EMNLP 2019, STA

实验结果

Model Loss Acc Train_time Test_size Test_time Best_epoch 输入说明 论文地址 年份
DSSM 0.6441 0.6341 1877.230 s 10000 1.524 s 15 字向量 DSSM 2013
ConvNet 0.6702 0.6945 210.760 s 10000 0.355 s 6 字向量 ConvNet 2015
ABCNN 0.6153 0.75 2872.306 s 10000 2.203 s 29 字向量 ABCNN 2017
ESIM 0.5545 0.755 35399.251 s 10000 53.762 s 41 字向量 ESIM 2017
ESIM 0.5592 0.738 35489.816 s 10000 65.915 s 18 字向量+Attention_Mask ESIM 2017
MAN - - - - - - - MAN 2018
BiMPM 0.4783 0.761 320535.6 s 10000 2070.67 s 44 字向量+静态词向量 BiMPM 2017
HCNN 0.6196 0.726 2843.951 s 10000 6.849 s 35 字向量+动态词向量 HCNN 2017
DIIN 0.4869 0.782 10000 220.748 s 14 字向量+动态词向量 DIIN 2018
TF 0.6537 0.699 2630.853 s 10000 7.384 s 44 动态词向量+位置向量 TF 2018
RE2 0.5115 0.763 7374.503 s 10000 15.281 s 18 字向量+动态词向量 RE2 2019
GTF 0.6438 0.698 23725.764 s 10000 54.646 s 40 n-gram字向量+词向量+位置向量 [GTF]

About

面向中文领域的轻量文本匹配框架,集成文本匹配,文本蕴含,释义识别等领域的各个经典,STA模型

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published