Clone this project
git clone https://github.com/Waller-Lab/SpeckleFlowSIM.git
Set up & activate virtual env
conda create -n virtualenv_name python=3.9
conda activate virtualenv_name
Install dependencies
pip install https://storage.googleapis.com/jax-releases/cuda111/jaxlib-0.1.72+cuda111-cp39-none-manylinux2010_x86_64.whl
pip install -r requirements.txt # install the rest of env via pip
conda install -c conda-forge jupyterlab nodejs ipympl # for visualization
Install the in-house library
git clone --branch v0.0.1 https://github.com/rmcao/CalCIL.git
cd calcil
pip3 install -e .
Download the data from Google Drive and place it under the project folder.
$ jupyter lab --no-browser --port=8899
simulation.ipynb: simulation reconstruction on a dynamic Shepp-Logan phantom.
experiment.ipynb: experimental reconstruction on a absorptive USAF-1951 resolution target.
├── checkpoint : folder to store model checkpoints
├── README.md : README file
├── simulation.ipynb : notebook for Speckle Flow SIM simulation
├── experiment.ipynb : notebook for Speckle Flow SIM experiment
├── experiment.npz : experimental data
├── requirement.txt : dependencies to install
├── spacetime.py : implementation of the neural space-time model
├── speckle_flow.py : incorporating Speckle SIM forward model with neural space-time model for Speckle Flow SIM
└── utils.py : utility functions for motion and dynamic scene generation.
@article{cao2022dynamic,
title={Dynamic Structured Illumination Microscopy with a Neural Space-time Model},
author={Cao, Ruiming and Liu, Fanglin Linda and Yeh, Li-Hao and Waller, Laura},
journal={arXiv preprint arXiv:2206.01397},
year={2022}
}