A Python Library and Command Line tool for interacting with the PTG API and data streams.
For how to record, see this.
# install
pip install 'git+ssh://[email protected]/VIDA-NYU/ptgctl.git[all]'
If you want to install and make additions to the package, then you should install like this:
# install
git clone git+ssh://[email protected]/VIDA-NYU/ptgctl.git
cd ptgctl
pip install -e '.[all]'
# list available recordings
ptgctl recordings ls
# list all recordings with their stats (e.g. timestamps, size, etc.)
ptgctl recordings ls --info
# get the stats for recording coffee-test-1
ptgctl recordings get coffee-test-1
# start recording
ptgctl recordings start my-recording-1
# get the current recording
ptgctl recordings current
ptgctl recordings current --info # get it with stats
# stop recording
ptgctl recordings stop
Access recording exports: e.g.
ptgctl recordings static my-recording-1 main.mp4 # main camera
ptgctl recordings static my-recording-1 gll.mp4 # grey left-rear camera
ptgctl recordings static my-recording-1 depthlt.mp4 # depth camera
ptgctl recordings static my-recording-1 mic0.wav # microphone
ptgctl recordings static my-recording-1 eye.json # eye tracking
ptgctl recordings static my-recording-1 hand.json # hand tracking
ptgctl recordings static my-recording-1 pointcloud.json # point cloud
ptgctl recordings static my-recording-1 depthltCal.json # depth calibration data
...
get/set details about a stream. This represents the metadata associated with a single data stream (e.g. a camera, accelerometer, or a microphone)
TODO: ptgctl streams ls
only shows streams if they have uploaded data. This means ptgctl streams new $stream_id
won't be shown
stream_id=main # main camera
stream_id=glf # grayscale, left-front camera
stream_id=mic0 # mic 0
# ...
# get list of stream names
ptgctl streams ls
# get list of stream names with stream info
ptgctl streams ls --info
# get info about a stream
ptgctl streams get $stream_id
# create a stream
ptgctl streams new $stream_id --desc "some description"
# update a stream
ptgctl streams update $stream_id --desc "some new description" --some-metadata blah --something-else 5
# delete a stream
ptgctl streams delete $stream_id
get/set details about a recipe.
TODO: Let's discuss the information we want to store in each step.
TODO: Add example with already parsed steps
# get list of recipe names
ptgctl recipes ls
# get info about a recipe
ptgctl recipes get $recipe_id
# create a recipe TODO: We don't have automatic recipe parsing setup yet.
ptgctl recipes new $recipe_id --title "Mug Cake" --text "Some recipe to parse..."
# get update a recipe
ptgctl recipes update $recipe_id --title "Mug Cake wooooo"
# get delete a recipe
ptgctl delete-recipe $recipe_id
get/set details about a session. This is meant to be a context that the step tracking and application state can exist in.
# get list of sessions names
ptgctl sessions ls
# get all sessions and their info/metadata
ptgctl sessions ls --info
# get info about a session
ptgctl sessions get $session_id
# create a session
ptgctl sessions new --desc "some description"
# get update a session
ptgctl sessions update $session_id --desc "some new description" --some-metadata blah --something-else 5
# get delete a session
ptgctl sessions delete $session_id
There are data stream methods, however they are not super useful on their own via the CLI. See the Displaying Data section for ways to utilize this from the CLI.
# upload a video stream from your webcam
ptgctl mock video $stream_id
# if your webcam isn't default, you can pass a different index
ptgctl mock video $stream_id --src 1
# there's also nothing stopping you from passing a video path
ptgctl mock video $stream_id --src some/video.mp4
# you can also simulate the left/right greyscale cameras
ptgctl mock video $stream_id --pos 1 # glr - left rear
ptgctl mock video $stream_id --pos 2 # glf - left front
ptgctl mock video $stream_id --pos 3 # grf - right front
ptgctl mock video $stream_id --pos 4 # grr - right rear
# watch a video stream from the very beginning
ptgctl display imshow $stream_id --last-entry-id 0
# if the video stream was stored as a hololens frame, you can parse it with this flag
ptgctl display imshow $stream_id --raw-holo
You can also record audio and upload it.
stream_id=mic0
# upload an audio stream
ptgctl mock audio $stream_id
# watch a video stream
ptgctl display imshow $stream_id
# watch a video stream from the very beginning
ptgctl display imshow $stream_id --last-entry-id 0
# if the video stream was stored as a hololens frame, you can parse it with this flag
ptgctl display imshow $stream_id --raw-holo
stream_id=mic0
# play an audio stream starting now
ptgctl display audio $stream_id
# play an audio stream starting from the beginning of the stream
ptgctl display audio $stream_id --last-entry-id 0
Right now, you can select your server like this:
I have the default set to the local server for now. Use
--nolocal
for the remote server.
# by default, it will use the live main server
ptgctl streams
# but you can point it to the server on your computer (localhost:7890) like this
ptgctl streams --local
# if the default happens to be the local server, then you can select the remote server like this:
ptgctl streams --nolocal
# or if you need to give it the url to another machine
ptgctl streams --url 192.168.1.17:7890
The usage in Python is fundamentally the same as the CLI, but using Python syntax.
The CLI uses fire to generate a command line interface
from the API
class, so anything you do with the CLI is fundamentally a python instance method or property of
the API()
object.
import ptgctl
api = API()
streams = api.streams.ls()
stream = api.streams.get(stream_id)
api.streams.update(
stream_id, desc='some new description',
some_metadata='blah', something_else=5)
recipes = api.recipes.ls()
recipe = api.recipes.get(recipe_id)
# etc...
Here's how you can display images using both sync and async code.
import io
import cv2
from PIL import Image
# synchronous, polling
def imshow(api, stream_id, **kw):
while True:
for sid, ts, data in api.data(stream_id):
# load image and display
im = np.array(Image.open(io.BytesIO(data)))
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
cv2.imshow(sid, im)
# this is needed for imshow to work
if cv2.waitKey(1) & 0xFF == ord('q'):
break
imshow(api, 'main')
# async, streaming
async def imshow_async(api, stream_id, **kw):
async with api.data_pull_connect(stream_id, **kw) as ws:
while True:
for sid, ts, data in await ws.recv_data():
# load image and display
im = np.array(Image.open(io.BytesIO(data)))
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
cv2.imshow(sid, im)
# this is needed for imshow to work
if cv2.waitKey(1) & 0xFF == ord('q'):
break
import asyncio
asyncio.run(imshow_async(api, 'main'))
And the same applies for other data streams:
import io
import cv2
from PIL import Image
# synchronous, polling
def pull(api, stream_id, **kw):
while True:
for sid, ts, data in api.data(stream_id):
print(sid, ts)
pull(api, 'gyro')
# async, streaming
async def pull_async(api, stream_id, **kw):
async with api.data_pull_connect(stream_id, **kw) as ws:
while True:
for sid, ts, data in await ws.recv_data():
print(sid, ts)
import asyncio
asyncio.run(pull_async(api, 'gyro'))
Full API Documentation can be generated using
# for development
cd docs/
sphinx-autobuild . _build/html --watch ../ptgctl
# for viewing the compiled
cd docs/
make html # optional - to build the latest version.
python -m http.server -d _build/html/
-
Recipe Upload
- (api) support uploading a full recipe text and parsing text into steps
- launch background nlp task on upload
- Question: What information does the recipe parsing need?
- (api) support uploading a full recipe text and parsing text into steps
-
Stream Update
- (api) support both metadata merging and overwriting
-
Data Streams
- (ctl) support dumping to file
- (ctl) synchonous websocket generator?
-
CLI Config
- (ctl) persist url change (switch from remote/local and remember)
-
Tools
- Display
- show example with both upload and download at the same time
- Display