-
Notifications
You must be signed in to change notification settings - Fork 415
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3161 from kylejgillett/main
Add Complex Sounding Layout Example
- Loading branch information
Showing
1 changed file
with
354 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,354 @@ | ||
# Copyright (c) 2015,2016,2017 MetPy Developers. | ||
# Distributed under the terms of the BSD 3-Clause License. | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
|
||
""" | ||
================================== | ||
Sounding Plot with Complex Layout | ||
================================== | ||
This example combines simple MetPy plotting functionality, `metpy.calc` | ||
computation functionality, and a few basic tricks to create an | ||
advanced sounding plotter with a clean layout & high readability. | ||
""" | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
|
||
import metpy.calc as mpcalc | ||
from metpy.cbook import get_test_data | ||
from metpy.plots import add_metpy_logo, Hodograph, SkewT | ||
from metpy.units import units | ||
|
||
########################################### | ||
# Upper air data can easily be obtained using the siphon package, | ||
# but for this example we will use some of MetPy's sample data. | ||
|
||
col_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed'] | ||
|
||
df = pd.read_fwf(get_test_data('may4_sounding.txt', as_file_obj=False), | ||
skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names) | ||
|
||
# Drop any rows with all NaN values for T, Td, winds | ||
df = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed'), | ||
how='all').reset_index(drop=True) | ||
|
||
########################################### | ||
# We will pull the data out of the example dataset into | ||
# individual variables and assign units. | ||
|
||
p = df['pressure'].values * units.hPa | ||
z = df['height'].values * units.m | ||
T = df['temperature'].values * units.degC | ||
Td = df['dewpoint'].values * units.degC | ||
wind_speed = df['speed'].values * units.knots | ||
wind_dir = df['direction'].values * units.degrees | ||
u, v = mpcalc.wind_components(wind_speed, wind_dir) | ||
|
||
########################################### | ||
# Now lets make a Skew-T Log-P diagram using some simply | ||
# MetPy functionality | ||
|
||
# Create a new figure. The dimensions here give a good aspect ratio | ||
fig = plt.figure(figsize=(9, 9)) | ||
add_metpy_logo(fig, 430, 30, size='large') | ||
|
||
skew = SkewT(fig, rotation=45, rect=(0.1, 0.1, 0.55, 0.85)) | ||
|
||
# Plot the data using normal plotting functions, in this case using | ||
# log scaling in Y, as dictated by the typical meteorological plot | ||
skew.plot(p, T, 'r') | ||
skew.plot(p, Td, 'g') | ||
skew.plot_barbs(p, u, v) | ||
|
||
# Change to adjust data limits and give it a semblance of what we want | ||
skew.ax.set_adjustable('datalim') | ||
skew.ax.set_ylim(1000, 100) | ||
skew.ax.set_xlim(-20, 30) | ||
|
||
# Add the relevant special lines | ||
skew.plot_dry_adiabats() | ||
skew.plot_moist_adiabats() | ||
skew.plot_mixing_lines() | ||
|
||
# Create a hodograph | ||
ax = plt.axes((0.7, 0.75, 0.2, 0.2)) | ||
h = Hodograph(ax, component_range=60.) | ||
h.add_grid(increment=20) | ||
h.plot(u, v) | ||
|
||
########################################### | ||
# This layout isn't bad, especially for how little code it required, | ||
# but we could add a few simple tricks to greatly increase the | ||
# readability and complexity of our Skew-T/Hodograph layout. Lets | ||
# try another Skew-T with a few more advanced features: | ||
|
||
########################################### | ||
# STEP 1: CREATE THE SKEW-T OBJECT AND MODIFY IT TO CREATE A | ||
# NICE, CLEAN PLOT | ||
|
||
# Create a new figure. The dimensions here give a good aspect ratio | ||
fig = plt.figure(figsize=(18, 12)) | ||
skew = SkewT(fig, rotation=45, rect=(0, 0, 0.50, 0.90)) | ||
# add the metpy logo | ||
add_metpy_logo(fig, 100, 80, size='small') | ||
|
||
# Change to adjust data limits and give it a semblance of what we want | ||
skew.ax.set_adjustable('datalim') | ||
skew.ax.set_ylim(1000, 100) | ||
skew.ax.set_xlim(-20, 30) | ||
|
||
# Set some better labels than the default to increase readability | ||
skew.ax.set_xlabel(str.upper(f'Temperature ({T.units:~P})'), weight='bold') | ||
skew.ax.set_ylabel(str.upper(f'Pressure ({p.units:~P})'), weight='bold') | ||
|
||
# Set the facecolor of the Skew Object and the Figure to white | ||
fig.set_facecolor('#ffffff') | ||
skew.ax.set_facecolor('#ffffff') | ||
|
||
# Here we can use some basic math and Python functionality to make a cool | ||
# shaded isotherm pattern. | ||
x1 = np.linspace(-100, 40, 8) | ||
x2 = np.linspace(-90, 50, 8) | ||
y = [1100, 50] | ||
for i in range(0, 8): | ||
skew.shade_area(y=y, x1=x1[i], x2=x2[i], color='gray', alpha=0.02, zorder=1) | ||
|
||
########################################### | ||
# STEP 2: PLOT DATA ON THE SKEW-T. TAKE A COUPLE EXTRA STEPS TO | ||
# INCREASE READABILITY | ||
|
||
# Plot the data using normal plotting functions, in this case using | ||
# log scaling in Y, as dictated by the typical meteorological plot | ||
# set the linewidth to 4 for increased readability. | ||
# We will also add the 'label' kew word argument for our legend. | ||
skew.plot(p, T, 'r', lw=4, label='TEMPERATURE') | ||
skew.plot(p, Td, 'g', lw=4, label='DEWPOINT') | ||
|
||
# again we can use some simple python math functionality to 'resample' | ||
# the wind barbs for a cleaner output with increased readability. | ||
# Something like this would work. | ||
interval = np.logspace(2, 3, 40) * units.hPa | ||
idx = mpcalc.resample_nn_1d(p, interval) | ||
skew.plot_barbs(pressure=p[idx], u=u[idx], v=v[idx]) | ||
|
||
# Add the relevant special lines native to the Skew-T Log-P diagram & | ||
# provide basic adjustments to linewidth and alpha to increase readability | ||
# first we add a matplotlib axvline to highlight the 0 degree isotherm | ||
skew.ax.axvline(0 * units.degC, linestyle='--', color='blue', alpha=0.3) | ||
skew.plot_dry_adiabats(lw=1, alpha=0.3) | ||
skew.plot_moist_adiabats(lw=1, alpha=0.3) | ||
skew.plot_mixing_lines(lw=1, alpha=0.3) | ||
|
||
# Calculate LCL height and plot as black dot. Because `p`'s first value is | ||
# ~1000 mb and its last value is ~250 mb, the `0` index is selected for | ||
# `p`, `T`, and `Td` to lift the parcel from the surface. If `p` was inverted, | ||
# i.e. start from low value, 250 mb, to a high value, 1000 mb, the `-1` index | ||
# should be selected. | ||
lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0]) | ||
skew.plot(lcl_pressure, lcl_temperature, 'ko', markerfacecolor='black') | ||
|
||
# Calculate full parcel profile and add to plot as black line | ||
prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC') | ||
skew.plot(p, prof, 'k', linewidth=2, label='SB PARCEL PATH') | ||
|
||
# Shade areas of CAPE and CIN | ||
skew.shade_cin(p, T, prof, Td, alpha=0.2, label='SBCIN') | ||
skew.shade_cape(p, T, prof, alpha=0.2, label='SBCAPE') | ||
|
||
########################################### | ||
# STEP 3: CREATE THE HODOGRAPH INSET. TAKE A FEW EXTRA STEPS TO | ||
# INCREASE READABILITY | ||
|
||
# Create a hodograph object: first we need to add an axis | ||
# then we can create the metpy Hodograph | ||
hodo_ax = plt.axes((0.43, 0.40, 0.5, 0.5)) | ||
h = Hodograph(hodo_ax, component_range=80.) | ||
# Add two separate grid increments for a cooler look. This also | ||
# helps to increase readability | ||
h.add_grid(increment=20, ls='-', lw=1.5, alpha=0.5) | ||
h.add_grid(increment=10, ls='--', lw=1, alpha=0.2) | ||
# The next few steps makes for a clean hodograph inset, removing the | ||
# tick marks, tick labels and axis labels | ||
h.ax.set_box_aspect(1) | ||
h.ax.set_yticklabels([]) | ||
h.ax.set_xticklabels([]) | ||
h.ax.set_xticks([]) | ||
h.ax.set_yticks([]) | ||
h.ax.set_xlabel(' ') | ||
h.ax.set_ylabel(' ') | ||
|
||
# Here we can add a simple python for loop that adds tick marks | ||
# to the inside of the hodograph plot to increase readability! | ||
plt.xticks(np.arange(0, 0, 1)) | ||
plt.yticks(np.arange(0, 0, 1)) | ||
for i in range(10, 120, 10): | ||
h.ax.annotate(str(i), (i, 0), xytext=(0, 2), textcoords='offset pixels', | ||
clip_on=True, fontsize=10, weight='bold', alpha=0.3, zorder=0) | ||
for i in range(10, 120, 10): | ||
h.ax.annotate(str(i), (0, i), xytext=(0, 2), textcoords='offset pixels', | ||
clip_on=True, fontsize=10, weight='bold', alpha=0.3, zorder=0) | ||
|
||
# plot the hodograph itself, using plot_colormapped, colored | ||
# by height | ||
h.plot_colormapped(u, v, c=z, linewidth=6, label='0-12km WIND') | ||
# compute Bunkers storm motion so we can plot it on the hodograph! | ||
RM, LM, MW = mpcalc.bunkers_storm_motion(p, u, v, z) | ||
h.ax.text((RM[0].m + 0.5), (RM[1].m - 0.5), 'RM', weight='bold', ha='left', | ||
fontsize=13, alpha=0.6) | ||
h.ax.text((LM[0].m + 0.5), (LM[1].m - 0.5), 'LM', weight='bold', ha='left', | ||
fontsize=13, alpha=0.6) | ||
h.ax.text((MW[0].m + 0.5), (MW[1].m - 0.5), 'MW', weight='bold', ha='left', | ||
fontsize=13, alpha=0.6) | ||
h.ax.arrow(0, 0, RM[0].m - 0.3, RM[1].m - 0.3, linewidth=2, color='black', | ||
alpha=0.2, label='Bunkers RM Vector', | ||
length_includes_head=True, head_width=2) | ||
|
||
########################################### | ||
# STEP 4: ADD A FEW EXTRA ELEMENTS TO REALLY MAKE A NEAT PLOT | ||
|
||
|
||
# First we want to actually add values of data to the plot for easy viewing | ||
# to do this, lets first add a simple rectangle using matplotlib's 'patches' | ||
# functionality to add some simple layout for plotting calculated parameters | ||
# xloc yloc xsize ysize | ||
fig.patches.extend([plt.Rectangle((0.513, 0.00), 0.334, 0.37, | ||
edgecolor='black', facecolor='white', | ||
linewidth=1, alpha=1, transform=fig.transFigure, | ||
figure=fig)]) | ||
|
||
# now lets take a moment to calculate some simple severe-weather parameters using | ||
# metpy's calculations | ||
# here are some classic severe parameters! | ||
kindex = mpcalc.k_index(p, T, Td) | ||
total_totals = mpcalc.total_totals_index(p, T, Td) | ||
|
||
# mixed layer parcel properties! | ||
ml_t, ml_td = mpcalc.mixed_layer(p, T, Td, depth=50 * units.hPa) | ||
ml_p, _, _ = mpcalc.mixed_parcel(p, T, Td, depth=50 * units.hPa) | ||
mlcape, mlcin = mpcalc.mixed_layer_cape_cin(p, T, prof, depth=50 * units.hPa) | ||
|
||
# most unstable parcel properties! | ||
mu_p, mu_t, mu_td, _ = mpcalc.most_unstable_parcel(p, T, Td, depth=50 * units.hPa) | ||
mucape, mucin = mpcalc.most_unstable_cape_cin(p, T, Td, depth=50 * units.hPa) | ||
|
||
# Estimate height of LCL in meters from hydrostatic thickness (for sig_tor) | ||
new_p = np.append(p[p > lcl_pressure], lcl_pressure) | ||
new_t = np.append(T[p > lcl_pressure], lcl_temperature) | ||
lcl_height = mpcalc.thickness_hydrostatic(new_p, new_t) | ||
|
||
# Compute Surface-based CAPE | ||
sbcape, sbcin = mpcalc.surface_based_cape_cin(p, T, Td) | ||
|
||
# Compute SRH | ||
(u_storm, v_storm), *_ = mpcalc.bunkers_storm_motion(p, u, v, z) | ||
*_, total_helicity1 = mpcalc.storm_relative_helicity(z, u, v, depth=1 * units.km, | ||
storm_u=u_storm, storm_v=v_storm) | ||
*_, total_helicity3 = mpcalc.storm_relative_helicity(z, u, v, depth=3 * units.km, | ||
storm_u=u_storm, storm_v=v_storm) | ||
*_, total_helicity6 = mpcalc.storm_relative_helicity(z, u, v, depth=6 * units.km, | ||
storm_u=u_storm, storm_v=v_storm) | ||
|
||
# Copmute Bulk Shear components and then magnitude | ||
ubshr1, vbshr1 = mpcalc.bulk_shear(p, u, v, height=z, depth=1 * units.km) | ||
bshear1 = mpcalc.wind_speed(ubshr1, vbshr1) | ||
ubshr3, vbshr3 = mpcalc.bulk_shear(p, u, v, height=z, depth=3 * units.km) | ||
bshear3 = mpcalc.wind_speed(ubshr3, vbshr3) | ||
ubshr6, vbshr6 = mpcalc.bulk_shear(p, u, v, height=z, depth=6 * units.km) | ||
bshear6 = mpcalc.wind_speed(ubshr6, vbshr6) | ||
|
||
# Use all computed pieces to calculate the Significant Tornado parameter | ||
sig_tor = mpcalc.significant_tornado(sbcape, lcl_height, | ||
total_helicity3, bshear3).to_base_units() | ||
|
||
# Perform the calculation of supercell composite if an effective layer exists | ||
super_comp = mpcalc.supercell_composite(mucape, total_helicity3, bshear3) | ||
|
||
# there is a lot we can do with this data operationally, so lets plot some of | ||
# these values right on the plot, in the box we made | ||
# first lets plot some thermodynamic parameters | ||
plt.figtext(0.53, 0.32, 'SBCAPE: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.66, 0.32, f'{int(sbcape.m)} J/kg', weight='bold', | ||
fontsize=15, color='orangered', ha='right') | ||
plt.figtext(0.53, 0.29, 'SBCIN: ', weight='bold', | ||
fontsize=15, color='black', ha='left') | ||
plt.figtext(0.66, 0.29, f'{int(sbcin.m)} J/kg', weight='bold', | ||
fontsize=15, color='lightblue', ha='right') | ||
|
||
plt.figtext(0.53, 0.24, 'MLCAPE: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.66, 0.24, f'{int(mlcape.m)} J/kg', weight='bold', | ||
fontsize=15, color='orangered', ha='right') | ||
plt.figtext(0.53, 0.21, 'MLCIN: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.66, 0.21, f'{int(mlcin.m)} J/kg', weight='bold', | ||
fontsize=15, color='lightblue', ha='right') | ||
|
||
plt.figtext(0.53, 0.16, 'MUCAPE: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.66, 0.16, f'{int(mucape.m)} J/kg', weight='bold', | ||
fontsize=15, color='orangered', ha='right') | ||
plt.figtext(0.53, 0.13, 'MUCIN: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.66, 0.13, f'{int(mucin.m)} J/kg', weight='bold', | ||
fontsize=15, color='lightblue', ha='right') | ||
|
||
plt.figtext(0.53, 0.08, 'TT-INDEX: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.66, 0.08, f'{int(total_totals.m)} Δ°C', weight='bold', | ||
fontsize=15, color='orangered', ha='right') | ||
plt.figtext(0.53, 0.05, 'K-INDEX: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.66, 0.05, f'{int(kindex.m)} °C', weight='bold', | ||
fontsize=15, color='orangered', ha='right') | ||
|
||
# now some kinematic parameters | ||
met_per_sec = (units.m * units.m) / (units.sec * units.sec) | ||
plt.figtext(0.68, 0.32, '0-1km SRH: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.83, 0.32, f'{int(total_helicity1.m)* met_per_sec:~P}', | ||
weight='bold', fontsize=15, color='navy', ha='right') | ||
plt.figtext(0.68, 0.29, '0-1km SHEAR: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.83, 0.29, f'{int(bshear1.m)} kts', weight='bold', | ||
fontsize=15, color='blue', ha='right') | ||
|
||
plt.figtext(0.68, 0.24, '0-3km SRH: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.83, 0.24, f'{int(total_helicity3.m)* met_per_sec:~P}', | ||
weight='bold', fontsize=15, color='navy', ha='right') | ||
plt.figtext(0.68, 0.21, '0-3km SHEAR: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.83, 0.21, f'{int(bshear3.m)} kts', weight='bold', | ||
fontsize=15, color='blue', ha='right') | ||
|
||
plt.figtext(0.68, 0.16, '0-6km SRH: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.83, 0.16, f'{int(total_helicity6.m)* met_per_sec:~P}', | ||
weight='bold', fontsize=15, color='navy', ha='right') | ||
plt.figtext(0.68, 0.13, '0-6km SHEAR: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.83, 0.13, f'{int(bshear6.m)} kts', weight='bold', | ||
fontsize=15, color='blue', ha='right') | ||
|
||
plt.figtext(0.68, 0.08, 'SIG TORNADO: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.83, 0.08, f'{int(sig_tor.m)}', weight='bold', fontsize=15, | ||
color='orangered', ha='right') | ||
plt.figtext(0.68, 0.05, 'SUPERCELL COMP: ', weight='bold', fontsize=15, | ||
color='black', ha='left') | ||
plt.figtext(0.83, 0.05, f'{int(super_comp.m)}', weight='bold', fontsize=15, | ||
color='orangered', ha='right') | ||
|
||
# add legends to the skew and hodo | ||
skewleg = skew.ax.legend(loc='upper left') | ||
hodoleg = h.ax.legend(loc='upper left') | ||
|
||
# add a plot title | ||
plt.figtext(0.40, 0.92, 'OUN | MAY 4TH 1999 - 00Z VERTICAL PROFILE', | ||
weight='bold', fontsize=20, ha='center') | ||
|
||
# Show the plot | ||
plt.show() |