Skip to content

Commit

Permalink
make uniqueness defintions abstract
Browse files Browse the repository at this point in the history
  • Loading branch information
EgbertRijke committed Sep 12, 2023
1 parent 4689d54 commit 63c807b
Show file tree
Hide file tree
Showing 4 changed files with 32 additions and 26 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -53,15 +53,16 @@ module _
{B : UU l3} (f : type-subuniverse P B)
where

unique-action-equiv-function-subuniverse :
(X : type-subuniverse P)
is-contr
( Σ ( (Y : type-subuniverse P) equiv-subuniverse P X Y f X = f Y)
( λ h h X id-equiv = refl))
unique-action-equiv-function-subuniverse X =
is-contr-map-ev-id-equiv-subuniverse P X
( λ Y e f X = f Y)
( refl)
abstract
unique-action-equiv-function-subuniverse :
(X : type-subuniverse P)
is-contr
( Σ ( (Y : type-subuniverse P) equiv-subuniverse P X Y f X = f Y)
( λ h h X id-equiv = refl))
unique-action-equiv-function-subuniverse X =
is-contr-map-ev-id-equiv-subuniverse P X
( λ Y e f X = f Y)
( refl)

action-equiv-function-subuniverse :
(X Y : type-subuniverse P) equiv-subuniverse P X Y f X = f Y
Expand Down
16 changes: 9 additions & 7 deletions src/foundation/action-on-equivalences-functions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,13 +42,15 @@ module _
{l1 l2 : Level} {B : UU l2} (f : UU l1 B)
where

unique-action-equiv-function :
(X : UU l1)
is-contr (Σ ((Y : UU l1) X ≃ Y f X = f Y) (λ h h X id-equiv = refl))
unique-action-equiv-function X =
is-contr-map-ev-id-equiv
( λ Y e f X = f Y)
( refl)
abstract
unique-action-equiv-function :
(X : UU l1)
is-contr
( Σ ((Y : UU l1) X ≃ Y f X = f Y) (λ h h X id-equiv = refl))
unique-action-equiv-function X =
is-contr-map-ev-id-equiv
( λ Y e f X = f Y)
( refl)

action-equiv-function :
{X Y : UU l1} X ≃ Y f X = f Y
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,11 +41,13 @@ module _
( P : subuniverse l1 l2) (B : type-subuniverse P UU l3)
where

unique-action-equiv-family-over-subuniverse :
(X : type-subuniverse P)
is-contr (fiber (ev-id-equiv-subuniverse P X {λ Y e B X ≃ B Y}) id-equiv)
unique-action-equiv-family-over-subuniverse X =
is-contr-map-ev-id-equiv-subuniverse P X (λ Y e B X ≃ B Y) id-equiv
abstract
unique-action-equiv-family-over-subuniverse :
(X : type-subuniverse P)
is-contr
( fiber (ev-id-equiv-subuniverse P X {λ Y e B X ≃ B Y}) id-equiv)
unique-action-equiv-family-over-subuniverse X =
is-contr-map-ev-id-equiv-subuniverse P X (λ Y e B X ≃ B Y) id-equiv

action-equiv-family-over-subuniverse :
(X Y : type-subuniverse P) pr1 X ≃ pr1 Y B X ≃ B Y
Expand Down
11 changes: 6 additions & 5 deletions src/foundation/action-on-equivalences-type-families.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,11 +64,12 @@ module _
{l1 l2 : Level} (B : UU l1 UU l2)
where

unique-action-equiv-family :
{X : UU l1}
is-contr (fiber (ev-id-equiv (λ Y e B X ≃ B Y)) id-equiv)
unique-action-equiv-family =
is-contr-map-ev-id-equiv (λ Y e B _ ≃ B Y) id-equiv
abstract
unique-action-equiv-family :
{X : UU l1}
is-contr (fiber (ev-id-equiv (λ Y e B X ≃ B Y)) id-equiv)
unique-action-equiv-family =
is-contr-map-ev-id-equiv (λ Y e B _ ≃ B Y) id-equiv

action-equiv-family :
{X Y : UU l1} (X ≃ Y) B X ≃ B Y
Expand Down

0 comments on commit 63c807b

Please sign in to comment.