Skip to content

Commit

Permalink
xy to tikz: convert the Ker f diagram
Browse files Browse the repository at this point in the history
  • Loading branch information
favonia committed Sep 7, 2023
1 parent 68465eb commit 7166e65
Showing 1 changed file with 17 additions and 3 deletions.
20 changes: 17 additions & 3 deletions subgroups.tex
Original file line number Diff line number Diff line change
Expand Up @@ -312,9 +312,23 @@ \subsection{Kernels and cokernels}
\begin{xca}
Given a homomorphism $f:\Hom(G,G')$, prove that
\marginnote{Hint: consider the corresponding property of the preimage of $\Bf$.
$$\xymatrix{L\ar[drr]^h\ar@{.>}[dr]^{k}\ar[ddr]&&\\
&\Ker f\ar[r]_{\incl_{\ker f}}\ar[d]&G\ar[d]^f\\
&{1}\ar[r]&\,G'.}$$}
\[
\begin{tikzpicture}[scale=1.5]
\path (-1,1) node (L) {$L$}
(0,0) node (Ker) {$\Ker f$}
(1,0) node (G) {$G$}
(0,-1) node (one) {$1$}
(1,-1) node (G') {$G'$};
\draw[->,dotted] (L) -- node[above right] {$k$} (Ker);
\draw[->] (L) to[bend left] node[above right] {$h$} (G);
\draw[->] (L) to[bend right] (one);
\draw[->] (Ker) -- node[below] {$\incl_{\ker f}$} (G);
\draw[->] (Ker) -- (one);
\draw[->] (G) -- node[right] {$f$} (G');
\draw[->] (one) -- (G');
\end{tikzpicture}
\]
}
\begin{enumerate}
\item $f$ is a monomorphism if and only if the kernel is trivial
\item $f$ is an epimorphims if and only if the cokernel is contractible.
Expand Down

0 comments on commit 7166e65

Please sign in to comment.